Abstract:
A device parameter of a switching transistor is set in such a way that a leakage current of the switching transistor making up a power source switch which is turned off in a stand-by state is smaller than the sum total of subthreshold currents of P-channel or N-channel MOS transistors in an off state of a plurality of CMOS circuits. Therefore, the currents which flow through the plurality of CMOS circuits in the stand-by state are not determined by the subthreshold current but are determined by a small leakage current of the switching transistor. As a result, even when the CMOS circuit is shrunken and the subthreshold current increases, it is possible to reduce the current consumption in the stand-by state.
Abstract:
Herein disclosed is a data processing system having a memory packaged therein for realizing a large-scale and high-speed parallel distributed processing and, especially, a data processing system for the neural network processing. The neural network processing system according to the present invention comprises: a memory circuit for storing neuron output values, connection weights, the desired values of outputs, and data necessary for learning; and input/output circuit for writing or reading data in or out of said memory circuit; a processing circuit for performing a processing for determining the neuron outputs such as the product, sum and nonlinear conversion of the data stored in said memory circuit, a comparison of the output value and its desired value, and a processing necessary for learning; and a control circuit for controlling the operations of said memory circuit, said input/output circuit and said processing circuit. The processing circuit is constructed to include at least one of an adder, a multiplier, a nonlinear transfer function circuit and a comparator so that at least a portion of the processing necessary for determining the neutron output values such as the product or sum may be accomplished in parallel. Moreover, these circuits are shared among a plurality of neutrons and are operated in a time sharing manner to determine the plural neuron output values. Still moreover, the aforementioned comparator compares the neuron output value determined and the desired value of the otuput in parallel.
Abstract:
A large-scale semiconductor integrated circuit comprising a low voltage-operated CMOS internal circuit, input and output circuits having bipolar transistors, said low voltage-operated CMOS internal circuit being supplied with an internal power supply voltage which is produced by dropping an external power supply voltage, and a level shifting circuit which converts the levels of signals in the chip. The input and output signals have the ECL level or the TTL level. The low voltage-operated CMOS internal circuit includes, for example, a DRAM of greater than 4 megabits and a microprocessor, and the internal operation voltage is smaller than 1.5 V. By the structure, a high-speed, low-power-consumption and low-noise semiconductor device is provided.
Abstract:
A dynamic type semiconductor memory using MOS transistors, in which first and second booster circuits utilizing capacitances, respectively, are provided at each of stages preceding and succeeding to a word driver, respectively. Data lines of the memory are each provided with a voltage compensating circuit for increasing a voltage for charging a memory cell to a level higher than a source voltage for being rewritten in the memory cell. A first boosting circuit is operated after a word line driving pulse signal is produced. Subsequently, word driver selecting transistors are turned off, which is followed by operation of the second booster circuit. Thus, the word line voltage is boosted twice.
Abstract:
A semiconductor memory of multiplexed address inputs is made operative to receive column addresses and row addresses through common external address lines and to decode them consecutively in response to first and second strobe signals thereby to select one of memory cells. The semiconductor memory is equipped with address buffers exclusively for column and row addressing operations, respectively, the outputs of which are consecutively transmitted to column decoders and row decoders through common internal address lines.
Abstract:
A nonvolatile semiconductor memory device includes a first PMOS transistor and a second PMOS transistor having a gate, the first and the second PMOS transistors being connected in series; and a first NMOS transistor and a second NMOS transistor having a gate, the first and the second NMOS transistors being connected in series; wherein the gate of the second PMOS transistor and the gate of the second NMOS transistor are commonly connected and floated.
Abstract:
The present invention relates to a nonvolatile semiconductor memory, and more specifically relates to a nonvolatile semiconductor memory with increased program throughput. The present invention provides a nonvolatile semiconductor memory device with a plurality of block source lines corresponding to the memory blocks, arranged in parallel to the word lines, a plurality of global source lines arranged in perpendicular to the block source lines; and a plurality of switches for selectively connecting corresponding ones of the block source lines and the global source lines.
Abstract:
A nonvolatile semiconductor memory device comprises a first PMOS transistor and a second PMOS transistor having a gate, the first and the second PMOS transistors being connected in series; and a first NMOS transistor and a second NMOS transistor having a gate, the first and the second NMOS transistors being connected in series; wherein the gate of the second PMOS transistor and the gate of the second NMOS transistor are commonly connected and floated.
Abstract:
A delay from the release of a low power consumption mode of nonvolatile memory to the restart of read operation is reduced. Nonvolatile memory which can electrically rewrite stored information has in well regions plural nonvolatile memory cell transistors having drain electrodes and source electrodes respectively coupled to bit lines and source lines and gate electrodes coupled to word lines and storing information based on a difference between threshold voltages to a word line select level in read operation, and the nonvolatile memory has a low power consumption mode. In the low power consumption mode, a second voltage lower than a circuit ground voltage and higher than a first negative voltage necessary for read operation is supplied to the well regions and word lines. When boost forming a rewriting negative voltage therein, a circuit node at a negative voltage is not the circuit ground voltage in the low power consumption mode.
Abstract:
The present invention is directed to largely reduce peak current at the time of operation of a boosting circuit provided for an EEPROM. In the erase/write operation, first, a low-frequency clock signal as a selection clock signal is input by a low-frequency clock control signal to a charge pump. After lapse of a certain period (about ⅓ of fall time), a high-frequency clock signal having a frequency higher than that of the low-frequency clock signal is output by a high-frequency clock control signal and is input as the selection clock signal to the charge pump to boost a voltage to a predetermined voltage level. In such a manner, while suppressing the peak of consumption current, the fall time of the boosted voltage can be shortened.