摘要:
A field effect transistor is formed as follows. A semiconductor region of a first conductivity type with an epitaxial layer of a second conductivity extending over the semiconductor region is provided. A trench extending through the epitaxial layer and terminating in the semiconductor region is formed. A two-pass angled implant of dopants of the first conductivity type is carried out to thereby form a region of first conductivity type along the trench sidewalls. A threshold voltage adjust implant of dopants of the second conductivity type is carried out to thereby convert a conductivity type of a portion of the region of first conductivity type extending along upper sidewalls of the trench to the second conductivity type. Source regions of the first conductivity type flanking each side of the trench are formed.
摘要:
A MOSFET device for RF applications that uses a trench gate in place of the lateral gate used in lateral MOSFET devices is described. The trench gate in the devices of the invention is provided with a single, short channel for high frequency gain. The device of the invention is also provided with an asymmetric oxide in the trench gate, as well as LDD regions that lower the gate-drain capacitance for improved RF performance. Such features allow these devices to maintain the advantages of the LDMOS structure (better linearity), thereby increasing the RF power gain. The trench gate LDMOS of the invention also reduces the hot carrier effects when compared to regular LDMOS devices by reducing the peak electric field and impact ionization. Thus, the devices of the invention will have a better breakdown capability.
摘要:
In accordance with an embodiment of the present invention, a MOSFET includes at least two insulation-filled trench regions laterally spaced in a first semiconductor region to form a drift region therebetween, and at least one resistive element located along an outer periphery of each of the two insulation-filled trench regions. A ratio of a width of each of the insulation-filled trench regions to a width of the drift region is adjusted so that an output capacitance of the MOSFET is minimized.
摘要:
A trenched field effect transistor is provided that includes (a) a semiconductor substrate, (b) a trench extending a predetermined depth into the semiconductor substrate, (c) a pair of doped source junctions, positioned on opposite sides of the trench, (d) a doped heavy body positioned adjacent each source junction on the opposite side of the source junction from the trench, the deepest portion of the heavy body extending less deeply into said semiconductor substrate than the predetermined depth of the trench, and (e) a doped well surrounding the heavy body beneath the heavy body.
摘要:
In accordance with an embodiment of the present invention, a MOSFET includes at least two insulation-filled trench regions laterally spaced in a first semiconductor region to form a drift region therebetween, and at least one resistive element located along an outer periphery of each of the two insulation-filled trench regions. A ratio of a width of each of the insulation-filled trench regions to a width of the drift region is adjusted so that an output capacitance of the MOSFET is minimized.
摘要:
A semiconductor die package is disclosed. In one embodiment, the package includes a semiconductor die comprising a vertical power transistor. A source electrode and a gate contact region are at the first surface of the semiconductor die. A drain electrode is at the second surface of the semiconductor die. A base member is proximate to the second surface of the semiconductor die and is distal to the first surface of the semiconductor die and a cover disposed over the first surface of the semiconductor die. The cover is coupled to the base member and is adapted to transfer beat away from the semiconductor die.
摘要:
A trenched field effect transistor is provided that includes (a) a semiconductor substrate, (b) a trench extending a predetermined depth into the semiconductor substrate, (c) a pair of doped source junctions, positioned on opposite sides of the trench, (d) a doped heavy body positioned adjacent each source junction on the opposite side of the source junction from the trench, the deepest portion of the heavy body extending less deeply into said semiconductor substrate than the predetermined depth of the trench, and (e) a doped well surrounding the heavy body beneath the heavy body.
摘要:
A semiconductor substrate is provided that exhibits very low substrate resistance while also providing structural integrity and robustness to resist breakage during manufacturing. The invention also provides methods of making these semiconductor substrates. The semiconductor substrate includes a planar surface and a recess extending below the planar surface. Preferred substrates include a plurality of recesses arranged in an array.
摘要:
Systems and methods of fabricating Wafer Level Chip Scale Packaging (WLCSP) devices with transistors having source, drain and gate contacts on one side of the transistor while still having excellent electrical performance with low drain-to-source resistance RDS(on) include using a two-metal drain contact technique. The RDS(on) is further improved by using a through-silicon-via (TSV) technique to form a drain contact or by using a copper layer closely connected to the drain drift.
摘要:
A semiconductor die package is disclosed. The semiconductor die package comprises a metal substrate, and a semiconductor die comprising a first surface comprising a first electrical terminal, a second surface including a second electrical terminal, and at least one aperture. The metal substrate is attached to the second surface. A plurality of conductive structures is on the semiconductor die, and includes at least one conductive structure disposed in the at least one aperture. Other conductive structures may be disposed on the first surface of the semiconductor die.