Abstract:
An electronic device includes a heat generator having a terminal, a resonator which has an outer connection terminal and on which the heat generator is disposed, a first substrate having a first surface and a second surface with the resonator connected to the first surface, and a circuit part and other electronic parts disposed on the first surface or the second surface. The outer connection terminal of the resonator is connected to the first surface, and the terminal of the heat generator is connected to the second surface.
Abstract:
An oven controlled crystal oscillator consisting of heater-embedded ceramic package includes a substrate, a crystal package, a crystal blank, a metal lid, a first IC chip, and a cover lid. The crystal package is mounted on the substrate, and a central bottom of the crystal package is provided with the first IC chip. The crystal blank is mounted in the crystal package and sealed by the metal lid. The crystal package has an embedded heater layer establishing a symmetric thermal field with respect to the first IC chip and the crystal blank. Alternatively, a heater-embedded ceramic carrier substrate is arranged between the first IC chip and the crystal blank to establish a symmetric thermal field with respect to the first IC chip and the crystal blank. The cover lid is combined with the substrate to cover the crystal package and the metal lid.
Abstract:
A voltage controlled oscillator arrangement is disclosed. The arrangement includes a voltage controlled oscillator and a quadratic extension component. The voltage controlled oscillator has a tuning port. The tuning port is configured to select an operating frequency according to an applied voltage. The quadratic extension component is configured to generate a quadratic tuning voltage that as the applied voltage to the tuning port. The quadratic tuning voltage is generated according to a linear temperature compensation signal.
Abstract:
Provided is a clock generator that includes a comparator in which characteristics of two input signals vary over time. A voltage controller, having a resistor and at least one constant current source, generates a direct current (DC) voltage proportional to an output current of the constant current source and a resistance value of the resistor. The comparator compares a ramp voltage generated by the voltage controller with the DC voltage.
Abstract:
A voltage controlled oscillator arrangement is disclosed. The arrangement includes a voltage controlled oscillator and a bypass component. The voltage controlled oscillator has an output and a tuning port. The output provides an output signal at an operating frequency. The tuning port is configured to select the operating frequency according to an applied voltage. The voltage controlled oscillator has active portions and inactive portions. During the active portions, the output signal is at a non-zero value. The bypass component is configured to apply a bypass compensating signal to the tuning port during the active portions of the voltage controlled oscillator. The bypass compensating signal compensates for an oscillator temperature of the voltage controlled oscillator.
Abstract:
A semiconductor device includes: an oscillator; a semiconductor chip that includes an oscillation circuit connected to the oscillator, a timer circuit that generates a timing signal of a frequency according to a oscillation frequency of the oscillation circuit, and a frequency correction section that corrects a frequency of the timing signal based on temperature data; and a discrete device that includes at least one of a temperature sensing device that detects a peripheral temperature, that supplies the detected temperature as temperature data to the frequency correction section, and that is provided as a separate body to the semiconductor chip, or a capacitor that is electrically connected to both the oscillator and the oscillation circuit and that is provided as a separate body to the semiconductor chip, wherein the oscillator, the semiconductor chip and the discrete device are contained within a single package.
Abstract:
A handheld device and a frequency tracking method thereof are provided. The handheld device comprises an oscillator, a radio frequency (RF) chip, a modem module, a first thermal sensor and a thermal module. The oscillator generates an oscillation signal with an oscillation frequency. The RF chip is electrically connected to the oscillator and configured to receive a paging signal from a paging channel and an RF signal from a non-regular channel based on the oscillation signal. The modem module is electrically connected to the RF chip. The first thermal sensor disposed close to the oscillator measures a heat source temperature. The thermal module electrically connected to the modem module and the first thermal sensor enables the modem module to execute a frequency compensation process by using the RF signal of both the paging signal and the RF signal according to the heat source temperature.
Abstract:
Provided are a digitally controlled oscillator and an electronic device including the digitally controlled oscillator. The digitally controlled oscillator includes a digital control unit and a power control oscillation unit. The digital control unit compensates for a difference between a feedback signal of an output power and a reference power set based on an input digital control signal and outputting an output power. The power control oscillation unit receives a signal related to the output power, and generates an output clock having an oscillation frequency in response to the signal related to the output power.
Abstract:
The disclosure is directed to compensating for frequency drift in a voltage-controlled oscillator (VCO). Example methods and systems are described which may detect a signal edge associated with a transceiver, and determine whether one or more lock quality signals indicate that the VCO frequency is outside of an specified range, indicating an unacceptable amount of frequency drift. A frequency tuning setting of the VCO may be adjusted based on the one or more lock quality signals, and a determination may be made whether or not the one or more lock quality signals indicate that the VCO frequency has returned to the specified range. The adjustment of the frequency tuning setting of the VCO may be repeated until the VCO frequency returns to the specified range.
Abstract:
An crystal resonator includes a first oscillating circuit that oscillates a crystal resonator at a first frequency, a first impedance adjusting circuit that adjusts an impedance of a first oscillating system including the crystal resonator and the first oscillating circuit, a second oscillating circuit that oscillates the crystal resonator at a second frequency that is different from the first frequency, a second impedance adjusting circuit that adjusts an impedance of a second oscillating system including the crystal resonator and the second oscillating circuit, and a controlling circuit that controls the first impedance adjusting circuit and the second impedance adjusting circuit.