Abstract:
An automatic analytical apparatus includes a reaction container for mixing a sample with a reagent to react the sample to the reagent, a measurement unit that irradiates a reaction solution in the reaction container with light and measures the intensity of transmitted light or scattered light, a control unit that processes time-series light intensity data obtained through the measurement in the measurement unit, a storage unit that stores one or more approximation functions each approximating to a time-series change in the light intensity data, and an output unit that outputs a processing result of the control unit. The control unit selects any one of the approximation functions stored in the storage unit, calculates an approximate curve indicating a time-series change in the light intensity data using the selected approximation function, calculates deviation feature information based on deviation information between the light intensity data and the approximate curve, and detects and classifies an abnormality included in the light intensity data using the deviation feature information.
Abstract:
An optical absorption gas sensor has an LED light source and a photodiode light detector, a temperature measuring device for measuring the LED temperature and a temperature measuring device for measuring the photodiode temperature. The sensor is calibrated by measuring the response of photodiode current at zero analyte gas concentration and at a reference analyte gas concentration. From these measurement, calibration data taking into account the effect of photodiode temperature on the sensitivity of the photodiode and, independently, the effect of changes in the spectrum of light output by the LED on the light detected by the photodiode with LED temperature can be obtained. Calibration data is written to memory in the gas sensor and in operation of the gas sensor, the output is compensated for both LED and photodiode temperature. The LED and photodiode can therefore be relatively far apart and operate at significantly different temperatures allowing greater freedom of optical pathway design.
Abstract:
A method of analysis, analysis system, program product, apparatus, and method of supplying analysis of value incorporating the use of at least one data acquisition device, a central processor, and a communication link that is connectable between the data acquisition device and the central processor. The central processor is loaded with multivariate calibration models developed for predicting values for various properties of interest, wherein the calibration models are capable of compensating for variations in an effectively comprehensive set of measurement conditions and secondary material characteristics. As so configured, the calibration models can compensate for instrument variance without instrument-specific calibration transfer. Measurement results generated by the central processor can be transmitted to an output device of a user interface.
Abstract:
The present invention discloses a portable, reliable, automated and simple device using Spectral Fluorescence Signature technology (SFS) for fast and accurate drug detection, quantification and data storage. The present also discloses a method for using Spectral Fluorescence Signature technology (SFS) for fast and accurate drug detection, quantification and data storage. Such device and method needing not highly skilled personnel or specific background to run the tests.
Abstract:
A tray assembly for use with an apparatus adapted to inspect a liquid sample, including a support tray insertable within an inspection location within the liquid sample inspection apparatus so that a light source of the apparatus illuminates a liquid sample carried on the support tray and a detector of the apparatus receives light from the liquid sample when the support tray is positioned at the inspection location, and an insert supported within the support tray and having a first surface adapted to receive a first type of liquid carrier and a second surface adapted to receive a second type of liquid carrier different from the first type of liquid carrier.
Abstract:
The invention concerns a gas analyzer comprising: a measuring volume (2), a radiation source (1) for providing a beam to pass said measuring volume; a heat sink (16) for said radiation source; at least one thermal detector (3) having a hot junction within a support structure and receiving the radiation and a cold junction for reference within the same support structure and protected from said radiation; at least one optical bandpass filter (9) between said hot junction and said radiation source; and a thermal mass (11), which is formed of a material having high thermal conductance. The thermal mass has a cavity with a bottom step (34) and a rim (32), and a first length therebetween. The support structure has a frontal edge (35) and a base plate lip (33), and a second length therebetween. There is a radial gap between the thermal mass and the support structure. Press means urge said support structure in the cavity, whereupon a more efficient thermal contact is either between said frontal edge and said bottom step, or between said base plate lip and said rim. A first thermal barrier (17) is between the heat sink and the thermal mass, and a second thermal barrier (22) surrounds the thermal mass. A shield (19) formed of a material having high thermal conductance covers said second thermal barrier and is in thermal contact with said heat sink.
Abstract:
A double-beam spectrophotometer for spectral analysis of a sample in the infrared region is provided in which to eliminate errors in measurement of the absorbance of the sample caused by undesired thermal radiation from the sample itself, first and second sectors are used for division and recombination of beam paths and coordinated such that a detector which receives a beam along the combined beam path produces output signals consisting of components having a frequency f associated with the cycle of operation of the sectors and components having a frequency 2f, those components having frequencies f and 2f are independently derived out of the detector output signals, and the ratio of the components is computed, thereby obtaining the ratio of intensity of sample beam to reference beam independent of the undesired thermal radiation.
Abstract:
A swept frequency fluorometer having a signal processor or processing module configured to: receive signaling containing information about reflected light off one or more fluorescence species-of-interest in a liquid sample that is swept with light having a variable frequency range, the information including a characteristic optical frequency corresponding to a fluorescence species-of-interest in the liquid, and a characteristic/lifetime optical frequency corresponding to a distinct fluorescence lifetime in which the fluorescence species-of-interest remains in an excited state; and provide corresponding signaling containing information about an identity of the fluorescence species-of-interest detected and distinguished from overlapping fluorescence species in the liquid using the characteristic/lifetime optical frequency, based upon the signaling received.
Abstract:
Technology is provided for an aqueous solution constituent analyzer. The analyzer includes an ultraviolet light emitting diode (LED) with a current source providing variable current thereto. A spectrometer is positioned for receiving light from the LED transmitted through an aqueous solution. A controller receives radiant flux data for a plurality of wavelengths and determines, based on the radiant flux data, a usable number of the plurality of wavelengths that satisfies a relative uncertainty threshold. The controller can increase the current to the LED if the usable number of wavelengths is less than a minimum threshold and calculate a concentration of a constituent of interest in the solution. The controller can also determine a peak wavelength of the plurality of wavelengths having the greatest intensity value, and decrease the current level to the LED if the peak wavelength has an intensity value greater than a saturation value for the spectrometer.
Abstract:
A system comprised of an apparatus and a test device is described. The test device and the apparatus are designed to interact to determine the presence or absence of an analyte of interest in a sample placed on the test device.