Abstract:
A swept frequency fluorometer having a signal processor or processing module configured to: receive signaling containing information about reflected light off one or more fluorescence species-of-interest in a liquid sample that is swept with light having a variable frequency range, the information including a characteristic optical frequency corresponding to a fluorescence species-of-interest in the liquid, and a characteristic/lifetime optical frequency corresponding to a distinct fluorescence lifetime in which the fluorescence species-of-interest remains in an excited state; and provide corresponding signaling containing information about an identity of the fluorescence species-of-interest detected and distinguished from overlapping fluorescence species in the liquid using the characteristic/lifetime optical frequency, based upon the signaling received.
Abstract:
A calibration curve setting method used at the time of quantitatively analyzing specific components in a drug by a transmission Raman spectrum, the method comprising the steps of: obtaining respective transmission Raman spectra of a plurality of different wave number ranges including Raman hands corresponding to the specific components of a plurality of known drugs of which concentrations or amounts of the specific components are known and the concentrations or the amounts are different from each other; calculating candidate calibration curves which are candidates for calibration curves used for the quantitative analysis respectively from a plurality of transmission. Raman spectra in each of the wave number ranges; and using the most probable candidate calibration curve as a calibration curve for the quantitative analysis of the specific components, among the respective candidate calibration curves.
Abstract:
A turbidity sensor featuring a signal processor or processing module configured to: receive signaling containing information about light reflected off suspended matter in a liquid and sensed by a linear sensor array having rows and columns of optical elements; and determine corresponding signaling containing information about a concentration of turbidity of the liquid, based upon the signaling received.
Abstract:
The invention provides methods, compositions, kits, and systems for the sensitive detection of cardiac troponin, Such methods, compositions, kits, and systems are useful in diagnosis, prognosis, and determination of methods of treatment in conditions that involve release of cardiac troponin.
Abstract:
The invention relates to an optical sensor (1) for determining particle and/or dye concentrations in liquid or gaseous media and to a method for operating the same. The optical sensor (1) comprises at least one measuring head. The measuring head consists of an emitter unit (2) with a semiconductor emitting element (9), which emits visible emission light beams (8), and with a receiver unit (3) with a semiconductor receiving element (10). The portion of the emission light beams (8), which pass through an absorption section containing liquid or gaseous medium, is guided onto the receiving element (10). An evaluating unit (6) is coupled to the measuring head via electric leads (4, 4′), and the received signals, which are present at the output of the semiconductor receiving element (10), are evaluated inside said evaluating unit in order to determine the particle or die concentration.
Abstract:
Disclosed herein is a method for improving the precision of a test result from an instrument with an optical system that detects a signal. The method comprises including in the instrument a normalization target disposed directly or indirectly in the optical path of the optical system. Also disclosed are instruments comprising a normalization target, and systems comprising such an instrument and a test device that receives a sample suspected of containing an analyte.
Abstract:
A fluorescence observation apparatus according to an embodiment of the present technology includes a stage, an excitation section, and a spectroscopic imaging section. The stage is capable of supporting a fluorescently stained pathological specimen. The excitation section irradiates the pathological specimen on the stage with a plurality of line illuminations of different wavelengths, the plurality of line illuminations being a plurality of line illuminations situated on different axes and parallel to a certain-axis direction. The spectroscopic imaging section includes at least one imaging device capable of separately receiving pieces of fluorescence respectively excited with the plurality of line illuminations.
Abstract:
Provided is an information processing apparatus (100) including: an image acquiring unit (112) that acquires captured image information of a sample (20) dyed with a fluorescent dye reagent (10), an information acquiring unit (111) that acquires information related to the fluorescent dye reagent (10), a correcting unit (131) that corrects the luminance of the captured image information using a fluorescence fading coefficient that represents the rapidness at which the fluorescence intensity of the fluorescent dye reagent (10) drops, the fluorescence fading coefficient being included in the fluorescent dye reagent (10), and a calculating unit (132) that calculates information corresponding to fluorescent molecules in the captured image information, using the corrected luminance.
Abstract:
The invention provides methods, compositions, kits, and systems for the sensitive detection of cardiac troponin, Such methods, compositions, kits, and systems are useful in diagnosis, prognosis, and determination of methods of treatment in conditions that involve release of cardiac troponin.
Abstract:
The invention relates to an optical sensor (1) for determining particle and/or dye concentrations in liquid or gaseous media and to a method for operating the same. The optical sensor (1) comprises at least one measuring head. The measuring head consists of an emitter unit (2) with a semiconductor emitting element (9), which emits visible emission light beams (8), and with a receiver unit (3) with a semiconductor receiving element (10). The portion of the emission light beams (8), which pass through an absorption section containing liquid or gaseous medium, is guided onto the receiving element (10). An evaluating unit (6) is coupled to the measuring head via electric leads (4, 4′), and the received signals, which are present at the output of the semiconductor receiving element (10), are evaluated inside said evaluating unit in order to determine the particle or die concentration.