Abstract:
A detection device for cannabinoid use including a base unit and a display screen disposed on the base unit. A central processing unit and a tetrahydrocannabinol testing device are disposed within the base unit. A testing slot is disposed on a bottom portion of the base unit, with a back end of the testing slot disposed within the tetrahydrocannabinol testing device. Each of a plurality of testing strips is slidably and removably disposed within the testing slot. A printer has a pair of T-shaped attachment extensions. Each of the pair of attachment extensions and a universal serial bus plug disposed on the printer simultaneously removably and slidably engages each of a pair of attachment slots and a universal serial bus port disposed on the base unit, respectively. The tetrahydrocannabinol testing device is configured to analyze and calculate the presence and amount of tetrahydrocannabinol in a person's bloodstream.
Abstract:
The present invention relates to a gas cell (1) for optical measurements of gas content and/or concentration comprising a cavity (1a), at least one aperture (11) for gas exchange, at least one first socket (12) for light emitting means (2) and at least one second socket (13) for light detecting means (3). The length of an optical measuring path (A) through the cavity (1a) is defined by a direct or indirect distance between a light emitting means (2) in the first socket (12) and a light detecting means (3) in the second socket (13). The present invention teaches that an epoxy mold compound is used to form at least the parts of the gas cell (1) that define the optical measuring path (A).
Abstract:
A package for an optical assembly of a type that uses bulk optics in an optical path will require environmental protection from contaminants. It is common to construct a substantially hermetically sealed package to provide environmental protection for the optical assembly but such hermetically sealed packages are expensive to construct and are not completely reliable. Consequently, a package is provided for an optical assembly with the bulk optics encapsulated by a silicone encapsulant and encased within an epoxy layer and supported by a substrate base. The package for the optical assembly thus provides the bulk optics with the required environmental protection from contaminants.
Abstract:
A compact low-cost fire detector responds quickly by detecting an increase in the concentration of carbon dioxide gas in the ambient air. The detector also calculates the rate of build-up of carbon dioxide. The detector avoids the use of moving parts by employing a differential temperature black body source of infrared radiation in conjunction with a dual pass band filter. One of the pass bands is located at the 4.26 micron absorption band of carbon dioxide gas and the other pass band is located at 2.20 microns at which none of the atmospheric gases has an absorption band. The latter channel serves as a reference and renders the detector immune to false alarms caused by dust or smoke particles in the air or due to deterioration of certain components. The fire detector makes use of a sample chamber that consists of a serpentine passage in a block of material, the walls of the serpentine passsage being highly reflective so as to act as a light pipe.
Abstract:
The invention provides for an optical measuring instrument and measuring device. The optical measuring instrument for investigating a specimen contained in a sample comprises at least one source for providing at least one electromagnetic beam intended to irradiate the sample and to interact with the specimen within the sample, at least one sensor for detecting an output of the interaction between the specimen and the electromagnetic beam, an integrally formed mechanical bench for the optical and electronic components, a sample holder for holding the sample, wherein the at least one source, the at least one sensor, and the mechanical bench are integrated in one monolithic optoelectronic module and the sample holder can be connected to this module.
Abstract:
The invention relates to an optical sensor (1) for determining particle and/or dye concentrations in liquid or gaseous media and to a method for operating the same. The optical sensor (1) comprises at least one measuring head. The measuring head consists of an emitter unit (2) with a semiconductor emitting element (9), which emits visible emission light beams (8), and with a receiver unit (3) with a semiconductor receiving element (10). The portion of the emission light beams (8), which pass through an absorption section containing liquid or gaseous medium, is guided onto the receiving element (10). An evaluating unit (6) is coupled to the measuring head via electric leads (4, 4′), and the received signals, which are present at the output of the semiconductor receiving element (10), are evaluated inside said evaluating unit in order to determine the particle or die concentration.
Abstract:
An optical flow is disclosed having a shell with a first portion and a second portion. The first portion provides a light entry aperture, and the second portion provides an imaging aperture. An inlet tube and an outlet tube are retained between the first portion and the second portion. A viewing assembly is retained between the first portion and the second portion. The viewing assembly includes a reference plate and a flow channel. The flow channel fluidly communicates with the inlet tube and the outlet tube. The reference plate extends from the shell to serve as a repeatable reference point for properly positioning the optical flow cell.
Abstract:
A non-dispersive infrared (NDIR) multi-gas analyzer has an optical element that is positioned with respect to the axis of incident IR radiation such that it passes nearly all of the IR energy within a narrow band pass to one detector and reflects nearly all of the IR energy outside the narrow band pass to another detector. Thus, the optical element simultaneously functions both as a narrow band pass filter and a beam splitter, which transmits nearly all the IR energy within a band pass and reflects nearly all the IR energy outside the band pass. Additionally, the separation of the incoming energy can be achieved without an extended roll off. This allows using a reference transmission band that is very close to the absorption band of the gases of interest. It more specifically allows using a reference transmission band that is located between the absorption bands for hydrocarbons and carbon dioxide in an infrared analyzer that uses beam splitters.
Abstract:
A housing for a sensor, comprising a housing upper part and a housing lower part which, in the assembled state, form a receiving space which is suitable to receive a circuit board, which, with regard to the object of specifying a housing for a sensor which receives a circuit board as far as possible in the correct position and protects the latter as reliably as possible against undesired movements relative to the housing is characterized in that deformable means are assigned to the housing upper part and/or the housing lower part which, in the assembled state of the housing parts, are bent into the receiving space.
Abstract:
A fluorescence analysis system may include a sensor head that has a light source configured to emit light into a flow of fluid, a detector configured to detect fluorescent emissions from the flow of fluid, and a temperature sensor. The system may also include a flow chamber that includes a housing defining a cavity into which the sensor head can be inserted. In some examples, the housing is configured such that, when a flow of fluid enters the housing, the flow of fluid divides into at least a major stream passing adjacent the light source and the detector and a minor stream passing adjacent the temperature sensor. Such a flow chamber may direct fluid past different sensors components while inhibiting a build-up of solids particles, the generation of air locks, or other flow issues attendant with continuous or semi-continuous online operation.