Abstract:
Operations in fabricating a Fin FET include providing a substrate having a fin structure, where an upper portion of the fin structure has a first fin surface profile. An isolation region is formed on the substrate and in contact with the fin structure. A portion of the isolation region is recessed by an etch process to form a recessed portion and to expose the upper portion of the fin structure, where the recessed portion has a first isolation surface profile. A thermal hydrogen treatment is applied to the fin structure and the recessed portion. A gate dielectric layer is formed with a substantially uniform thickness over the fin structure, where the recessed portion is adjusted from the first isolation surface profile to a second isolation surface profile and the fin structure is adjusted from the first fin surface profile to a second fin surface profile, by the thermal hydrogen treatment.
Abstract:
A method for manufacturing a semiconductor device is provided including forming one or more fins over a substrate and forming an isolation insulating layer over the one or more fins. A dopant is introduced into the isolation insulating layer. The isolation insulating layer containing the dopant is annealed, and a portion of the oxide layer is removed so as to expose a portion of the fins.
Abstract:
A semiconductor device includes a semiconductor fin, a lining oxide layer, a silicon nitride based layer and a gate oxide layer. The semiconductor fin has a top surface, a first side surface adjacent to the top surface, and a second side surface which is disposed under and adjacent to the first side surface. The lining oxide layer peripherally encloses the second side surface of the semiconductor fin. The silicon nitride based layer is disposed conformal to the lining oxide layer. The gate oxide layer is disposed conformal to the top surface and the first side surface.
Abstract:
A semiconductor device structure is provided. The semiconductor device structure includes a transistor over a substrate. The semiconductor device structure includes a dielectric structure over the substrate and covering the transistor. The semiconductor device structure includes a contact structure passing through the dielectric structure and electrically connected to the transistor. The contact structure includes a contact layer, a first barrier layer, and a second barrier layer, the first barrier layer surrounds the contact layer, the second barrier layer surrounds a first upper portion of the first barrier layer, a first lower portion of the first barrier layer is in direct contact with the dielectric structure, and a thickness of the first lower portion increases toward the substrate.
Abstract:
A semiconductor device includes a transistor having a source/drain and a gate. The semiconductor device also includes a conductive contact for the transistor. The conductive contact provides electrical connectivity to the source/drain or the gate of the transistor. The conductive contact includes a plurality of barrier layers. The barrier layers have different depths from one another.
Abstract:
Some embodiments relate to a silicon wafer having a disc-like silicon body. The wafer includes a central portion circumscribed by a circumferential edge region. A plurality of sampling locations, which are arranged in the circumferential edge region, have a plurality of wafer property values, respectively, which correspond to a wafer property. The plurality of wafer property values differ from one another according to a pre-determined statistical edge region profile.
Abstract:
A fin-type field effect transistor comprising a substrate, at least one gate structure, spacers and strained source and drain regions is described. The at least one gate structure is disposed over the substrate and on the isolation structures. The spacers are disposed on sidewalls of the at least one gate structure. First blocking material layers are disposed on the spacers. The strained source and drain regions are disposed at two opposite sides of the at least one gate structure. Second blocking material layers are disposed on the strained source and drain regions. The first and second blocking material layers comprise oxygen-rich oxide materials.
Abstract:
Operations in fabricating a Fin FET include providing a substrate having a fin structure, where an upper portion of the fin structure has a first fin surface profile. An isolation region is formed on the substrate and in contact with the fin structure. A portion of the isolation region is recessed by an etch process to form a recessed portion and to expose the upper portion of the fin structure, where the recessed portion has a first isolation surface profile. A thermal hydrogen treatment is applied to the fin structure and the recessed portion. A gate dielectric layer is formed with a substantially uniform thickness over the fin structure, where the recessed portion is adjusted from the first isolation surface profile to a second isolation surface profile and the fin structure is adjusted from the first fin surface profile to a second fin surface profile by the thermal hydrogen treatment.
Abstract:
A fin field device structure and method for forming the same are provided. The FinFET device structure includes a substrate and a fin structure extending from the substrate. The FinFET device structure also includes an isolation structure formed on the substrate. The fin structure has a top portion and a bottom portion, and the bottom portion is embedded in the isolation structure. The FinFET device structure further includes a protection layer formed on the top portion of the fin structure. An interface is between the protection layer and the top portion of the fin structure, and the interface has a roughness in a range from about 0.1 nm to about 2.0 nm.
Abstract:
A method is provided for qualifying a semiconductor wafer for subsequent processing, such as thermal processing. A plurality of locations are defined about a periphery of the semiconductor wafer, and one or more properties, such as oxygen concentration and a density of bulk micro defects present, are measured at each of the plurality of locations. A statistical profile associated with the periphery of the semiconductor wafer is determined based on the one or more properties measured at the plurality of locations. The semiconductor wafer is subsequently thermally treated when the statistical profile falls within a predetermined range. The semiconductor wafer is rejected from subsequent processing when the statistical profile deviates from the predetermined range. As such, wafers prone to distortion, warpage, and breakage are rejected from subsequent thermal processing.