Semiconductor Device with Cut Metal Gate and Method of Manufacture

    公开(公告)号:US20230253263A1

    公开(公告)日:2023-08-10

    申请号:US18301772

    申请日:2023-04-17

    Abstract: An anchored cut-metal gate (CMG) plug, a semiconductor device including the anchored CMG plug and methods of forming the semiconductor device are disclosed herein. The method includes performing a series of etching processes to form a trench through a metal gate electrode, through an isolation region, and into a semiconductor substrate. The trench cuts-through and separates the metal gate electrode into a first metal gate and a second metal gate and forms a recess in the semiconductor substrate. Once the trench has been formed, a dielectric plug material is deposited into the trench to form a CMG plug that is anchored within the recess of the semiconductor substrate and separates the first and second metal gates. As such, the anchored CMG plug provides high levels of resistance to reduce leakage current within the semiconductor device during operation and allowing for improved V-trigger performance of the semiconductor device.

    Semiconductor device with cut metal gate and method of manufacture

    公开(公告)号:US11652005B2

    公开(公告)日:2023-05-16

    申请号:US17652712

    申请日:2022-02-28

    Abstract: An anchored cut-metal gate (CMG) plug, a semiconductor device including the anchored CMG plug and methods of forming the semiconductor device are disclosed herein. The method includes performing a series of etching processes to form a trench through a metal gate electrode, through an isolation region, and into a semiconductor substrate. The trench cuts-through and separates the metal gate electrode into a first metal gate and a second metal gate and forms a recess in the semiconductor substrate. Once the trench has been formed, a dielectric plug material is deposited into the trench to form a CMG plug that is anchored within the recess of the semiconductor substrate and separates the first and second metal gates. As such, the anchored CMG plug provides high levels of resistance to reduce leakage current within the semiconductor device during operation and allowing for improved V-trigger performance of the semiconductor device.

    Structure and formation method of semiconductor device with metal gate stacks

    公开(公告)号:US10461171B2

    公开(公告)日:2019-10-29

    申请号:US15965183

    申请日:2018-04-27

    Abstract: A method for forming a semiconductor device structure includes forming a first dummy gate stack and a second dummy gate stack over a semiconductor substrate and forming a dielectric layer over the semiconductor substrate to surround the first dummy gate stack and the second dummy gate stack. The method includes removing the first dummy gate stack and the second dummy gate stack to form a first trench and a second trench in the dielectric layer and removing the first dummy gate stack and the second dummy gate stack to form a first trench and a second trench in the dielectric layer. The method includes partially removing the first metal gate stack, the second metal gate stack, and the dielectric layer to form a recess. The method includes forming an insulating structure to partially or completely fill the recess.

    SEMICONDUCTOR DEVICE WITH CUT METAL GATE AND METHOD OF MANUFACTURE

    公开(公告)号:US20220181217A1

    公开(公告)日:2022-06-09

    申请号:US17652712

    申请日:2022-02-28

    Abstract: An anchored cut-metal gate (CMG) plug, a semiconductor device including the anchored CMG plug and methods of forming the semiconductor device are disclosed herein. The method includes performing a series of etching processes to form a trench through a metal gate electrode, through an isolation region, and into a semiconductor substrate. The trench cuts-through and separates the metal gate electrode into a first metal gate and a second metal gate and forms a recess in the semiconductor substrate. Once the trench has been formed, a dielectric plug material is deposited into the trench to form a CMG plug that is anchored within the recess of the semiconductor substrate and separates the first and second metal gates. As such, the anchored CMG plug provides high levels of resistance to reduce leakage current within the semiconductor device during operation and allowing for improved V-trigger performance of the semiconductor device.

    Semiconductor device with cut metal gate and method of manufacture

    公开(公告)号:US12112990B2

    公开(公告)日:2024-10-08

    申请号:US18301772

    申请日:2023-04-17

    Abstract: An anchored cut-metal gate (CMG) plug, a semiconductor device including the anchored CMG plug and methods of forming the semiconductor device are disclosed herein. The method includes performing a series of etching processes to form a trench through a metal gate electrode, through an isolation region, and into a semiconductor substrate. The trench cuts-through and separates the metal gate electrode into a first metal gate and a second metal gate and forms a recess in the semiconductor substrate. Once the trench has been formed, a dielectric plug material is deposited into the trench to form a CMG plug that is anchored within the recess of the semiconductor substrate and separates the first and second metal gates. As such, the anchored CMG plug provides high levels of resistance to reduce leakage current within the semiconductor device during operation and allowing for improved V-trigger performance of the semiconductor device.

Patent Agency Ranking