Abstract:
An apparatus includes a varactor having a first contact that is located on a first side of a substrate. The varactor includes a second contact that is located on a second side of the substrate, and the second side is opposite the first side. The apparatus further includes a signal path between the first contact and the second contact.
Abstract:
A device includes an acoustic resonator embedded within an encapsulating structure that at least partially encapsulates the acoustic resonator. The device includes an inductor electrically connected to the acoustic resonator. At least a portion of the inductor is embedded in the encapsulating structure.
Abstract:
A circuit includes a localized metal-insulator-metal (MIM) capacitor array in a radio frequency (RF) front end circuit, which is integrated on a first die, and includes a localized common shared ground node within the localized MIM capacitor array, a plurality of inductors, and a plurality of RF filters. Each of the plurality of RF filters includes a plurality of passive resonant frequency circuits, and each of the plurality of passive resonant frequency circuits is implemented utilizing one or more MIM capacitors in the localized MIM capacitor array, and one or more of the plurality of inductors. The plurality of inductors may be arranged at a periphery of the localized MIM capacitor array on the first die or integrated on a second die, which is coupled to the first die. Each of the MIM capacitors in the localized MIM capacitor array has a different capacitance value.
Abstract:
An integrated circuit (IC) includes a first semiconductor device on a glass substrate. The first semiconductor device includes a first semiconductive region of a bulk silicon wafer. The IC includes a second semiconductor device on the glass substrate. The second semiconductor device includes a second semiconductive region of the bulk silicon wafer. The IC includes a through substrate trench between the first semiconductive region and the second semiconductive region. The through substrate trench includes a portion disposed beyond a surface of the bulk silicon wafer.
Abstract:
A device includes a glass substrate and a capacitor. The capacitor includes a first metal coupled to a first electrode, a dielectric structure, and a via structure comprising a second electrode of the capacitor. The first metal structure is separated from the via structure by the dielectric structure.
Abstract:
Metal-insulator-metal (MIM) capacitors arranged in a pattern to reduce inductance, and related methods, are disclosed. In one aspect, circuits are provided that employ MIM capacitors coupled in series. The MIM capacitors are arranged in a pattern, wherein a MIM capacitor is placed so as to be electromagnetically adjacent to at least two MIM capacitors, and so that a current of the MIM capacitor flows in a direction opposite or substantially opposite of a direction in which a current of each adjacent MIM capacitor flows. The magnetic field generated at metal connections of each MIM capacitor rotates in an opposite direction of the magnetic field of each electromagnetically adjacent MIM capacitor, and thus a larger proportion of magnetic fields cancel out one another rather than combining, reducing equivalent series inductance (ESL) compared to linear arrangement of MIMs.
Abstract:
A semiconductor device according to some examples of the disclosure may include a package substrate, a semiconductor die coupled to one side of the package substrate with a first set of contacts on an active side of the semiconductor die and coupled to a plurality of solder prints with a second set of contacts on a back side of the semiconductor die. The semiconductor die may include a plurality of vias connecting the first set of contacts to the second set of contacts and configured to allow heat to be transferred from the active side of the die to the plurality of solder prints for a shorter heat dissipation path.
Abstract:
Passive device assembly for accurate ground plane control is disclosed. A passive device assembly includes a device substrate conductively coupled to a ground plane separation control substrate. A passive device disposed on a lower surface of the device substrate is separated from an embedded ground plane mounted on a lower surface of the ground plane separation control substrate by a separation distance. The separation distance is accurately controlled to minimize undesirable interference that may occur to the passive device. The separation distance is provided inside the passive device assembly. Conductive mounting pads are disposed on the lower surface of the ground plane separation control substrate to support accurate alignment of the passive device assembly on a circuit board. By providing sufficient separation distance inside the passive device assembly, the passive device assembly can be precisely mounted onto any circuit board regardless of specific design and layout of the circuit board.
Abstract:
The present disclosure provides integrated circuit apparatuses and methods for manufacturing integrated circuit apparatuses. An integrated circuit apparatus may include a first insulator, the first insulator being substantially planar and having a first top surface and a first bottom surface opposite the first top surface, a first conductor disposed on the first insulator, a second insulator, the second insulator being substantially planar and having a second top surface and a second bottom surface opposite the second top surface, a second conductor disposed on the second insulator, and a dielectric layer disposed between the first bottom conductor of the first insulator and the second top conductor of the second insulator.
Abstract:
The present disclosure provides circuits and methods for fabricating circuits. A circuit may include an insulator having a first surface, a second surface, a periphery, a first subset of circuit elements disposed on the first surface, a second subset of circuit elements disposed on the second surface, and at least one conductive sidewall disposed on the periphery, wherein the conductive sidewall electrically couples the first subset of circuit elements to the second subset of circuit elements.