Abstract:
Various embodiments of methods and systems for managing write transaction volume from a master component to a long term memory component in a system on a chip (“SoC”) are disclosed. Because power consumption and bus bandwidth are unnecessarily consumed when ephemeral data is written back to long term memory (such as a double data rate “DDR” memory) from a closely coupled memory component (such as a low level cache “LLC” memory) of a data generating master component, embodiments of the solutions seek to identify write transactions that contain ephemeral data and prevent the ephemeral data from being written to DDR.
Abstract:
Disclosed are methods and systems for intelligent adjustment of an immersive multimedia workload in a portable computing device (“PCD”), such as a virtual reality (“VR”) or augmented reality (“AR”) workload. An exemplary embodiment monitors one or more performance indicators comprising a motion to photon latency associated with the immersive multimedia workload. Performance parameters associated with thermally aggressive processing components are adjusted to reduce demand for power while ensuring that the motion to photon latency is and/or remains optimized. Performance parameters that may be adjusted include, but are not limited to including, eye buffer resolution, eye buffer MSAA, timewarp CAC, eye buffer FPS, display FPS, timewarp output resolution, textures LOD, 6DOF camera FPS, and fovea size.
Abstract:
A transparent format converter (TFC) may determine that a request by at least one processor for graphics data stored in graphics memory is indicative of a request for graphics data in a first data format. The TFC may retrieve the graphics data in a second data format from the graphics memory based at least in part on the request for the graphics data in the graphics memory. The TFC may convert the retrieved graphics data from the second data format to the first data format. The TFC may store the converted graphics data in the first data format into a memory that is accessible by the at least one processor.
Abstract:
Systems and methods for improved operation of a victim cache in a portable computing device (PCD) are presented. A lower level cache is operated as a victim to an upper level cache, the lower level cache containing a plurality of cache lines. A filter is operated in association with the lower level victim cache, and reflects the cache lines contained in the victim cache. For a miss at the upper level cache, the filter is checked to determine if the requested cache line is in the victim cache. If checking the filter determines that the requested cache line is in the victim cache the requested cache line is retrieved from the victim cache. If checking the filter determines that the request cache line is not in the victim cache, the victim cache is bypassed and the cache line is requested from a memory controller.
Abstract:
Various embodiments of systems and methods are disclosed for reducing volatile memory standby power in a portable computing device. One such method involves receiving a request for a volatile memory device to enter a standby power mode. One or more compression parameters are determined for compressing content stored in a plurality of banks of the volatile memory device. The stored content is compressed based on the one or more compression parameters to free-up at least one of the plurality of banks. The method disables self-refresh of at least a portion of one or more of the plurality of banks freed-up by the compression during the standby power mode.
Abstract:
Aspects include computing devices, systems, and methods for partitioning a system cache by sets and ways into component caches. A system cache memory controller may manage the component caches and manage access to the component caches. The system cache memory controller may receive system cache access requests specifying component cache identifiers, and match the component cache identifiers with records correlating traits of the component cache identifiers with in a component cache configuration table. The component cache traits may include a set shift trait, set offset trait, and target ways, which may define the locations of the component caches in the system cache. The system cache memory controller may also receive a physical address for the system cache in the system cache access request, determine an indexing mode for the component cache, and translate the physical address for the component cache.
Abstract:
Systems and methods for adaptive implementation of victim cache modes in a portable computing device (PCD) are presented. In operation, an upper level cache is partitioned into a main portion and a sample portion; and a lower level cache is partitioned into a corresponding main portion and sample portion in communication with the main portion and sample portion of the upper level cache. A victim mode sample data set and a normal mode sample data set are obtained from the lower level cache. Based on the victim mode and a normal mode sample data sets, a determination is made whether to operate the lower level cache as a victim to the upper level cache. The main portion of lower level cache is caused to operate either as a victim or non-victim to the main portion of the upper level cache in accordance with the determination.
Abstract:
Devices, systems, methods, and computer-readable mediums for arbitrating bus transactions on a communications bus based on health information are disclosed. Health information of master devices can be used to adjust priorities of bus transactions from master devices to meet quality of service requirements of the master devices. In one embodiment, a bus interconnect is provided and configured to communicate bus transactions from any of a plurality of master devices to slave device(s) coupled the bus interconnect. The bus interconnect is further configured to map health information for each of the plurality of master devices into virtual priority space. The bus interconnect is further configured to translate the virtual priority space into a physical priority level for each of the plurality of master devices. The bus interconnect is further configured to arbitrate bus transactions for the plurality of master devices based on physical priority level for the plurality of master devices.
Abstract:
An apparatus is configured to render graphics content to reduce latency of the graphics content. The apparatus includes a display configured to present graphics content including a first portion corresponding to an area of interest and further including a second portion. The apparatus further includes a fovea estimation engine configured to generate an indication of the area of interest based on scene information related to the graphics content. The apparatus further includes a rendering engine responsive to the fovea estimation engine. The rendering engine is configured to perform a comparison of a first result of an evaluation metric on part of the area of interest with a second result of the evaluation metric with another part of the area of interest. The rendering engine is further configured to render the graphics content using predictive adjustment to reduce latency based on the comparison.
Abstract:
An exemplary method for intelligent compression defines a threshold value for a key performance indicator. Based on the key performance indicator value, data blocks generated by a producer component may be scaled down to reduce power and/or bandwidth consumption when being compressed according to a lossless compression module. The compressed data blocks are then stored in a memory component along with metadata that signals the scaling factor used prior to compression. Consumer components later retrieving the compressed data blocks from the memory component may decompress the data blocks and upscale, if required, based on the scaling factor signaled by the metadata.