Abstract:
A memory controller is provided to increment a source timestamp count responsive to a clock signal. Further, the memory controller associates the source timestamp count to a respective word for each endpoint in a plurality of endpoints. The memory controller transmits the received clock signal, a respective data word, and an associated source count to each endpoint. Each endpoint increments a destination count responsive to the clock signal. Each endpoint further transmits its respective word to an external memory responsive to the destination count being greater than or equal to the associated source count by a threshold margin.
Abstract:
A method includes detecting, at a controller, a rate-of-change between first data traffic to be sent to a dynamic random access memory (DRAM) at a first time and second data traffic to be sent to the DRAM at a second time. The method also includes adjusting a data rate of the second data traffic in response to a determination that the rate-of-change satisfies a threshold.
Abstract:
A memory controller is provided to increment a source timestamp count responsive to a clock signal. Further, the memory controller associates the source timestamp count to a respective word for each endpoint in a plurality of endpoints. The memory controller transmits the received clock signal, a respective data word, and an associated source count to each endpoint. Each endpoint increments a destination count responsive to the clock signal. Each endpoint further transmits its respective word to an external memory responsive to the destination count being greater than or equal to the associated source count by a threshold margin.
Abstract:
A method for data synchronization is provided according to certain embodiments. The method comprises receiving data, a data clock signal, and a clean clock signal, sampling the data using the data clock signal, synchronizing the sampled data with the clean clock signal, and outputting the synchronized sampled data. The method also comprises tracking a phase drift between the data clock signal and the clean clock signal, and pulling in the output of the synchronized sampled data by one clock cycle of the clean clock signal if the tracked phase drift reaches a first value in a first direction.
Abstract:
A memory controller is configured to communicate to a DRAM an indication of when a most-recent memory-controller-triggered refresh cycle occurred prior to a transition to a self-refresh mode of operation in which the DRAM self-triggers its refresh cycles.
Abstract:
A method for data synchronization is provided according to certain embodiments. The method comprises receiving data, a data clock signal, and a clean clock signal, sampling the data using the data clock signal, synchronizing the sampled data with the clean clock signal, and outputting the synchronized sampled data. The method also comprises tracking a phase drift between the data clock signal and the clean clock signal, and pulling in the output of the synchronized sampled data by one clock cycle of the clean clock signal if the tracked phase drift reaches a first value in a first direction.
Abstract:
Aspects include computing devices, systems, and methods for reorganizing the storage of data in memory to energize less than all of the memory devices of a memory module for read or write transactions. The memory devices may be connected to individual select lines such that a re-order logic may determine the memory devices to energize for a transaction according to a re-ordered memory map. The re-order logic may re-order memory addresses such that memory address provided by a processor for a transaction are converted to the re-ordered memory address according to the re-ordered memory map without the processor having to change its memory address scheme. The re-ordered memory map may provide for reduced energy consumption by the memory devices, or a balance of energy consumption and performance speed for latency tolerant processes.
Abstract:
Various embodiments of systems and methods are disclosed for reducing volatile memory standby power in a portable computing device. One such method involves receiving a request for a volatile memory device to enter a standby power mode. One or more compression parameters are determined for compressing content stored in a plurality of banks of the volatile memory device. The stored content is compressed based on the one or more compression parameters to free-up at least one of the plurality of banks. The method disables self-refresh of at least a portion of one or more of the plurality of banks freed-up by the compression during the standby power mode.
Abstract:
A memory controller is configured to communicate to a DRAM an indication of when a most-recent memory-controller-triggered refresh cycle occurred prior to a transition to a self-refresh mode of operation in which the DRAM self-triggers its refresh cycles.
Abstract:
Aspects include computing devices, systems, and methods for reorganizing the storage of data in memory to energize less than all of the memory devices of a memory module for read or write transactions. The memory devices may be connected to individual select lines such that a re-order logic may determine the memory devices to energize for a transaction according to a re-ordered memory map. The re-order logic may re-order memory addresses such that memory address provided by a processor for a transaction are converted to the re-ordered memory address according to the re-ordered memory map without the processor having to change its memory address scheme. The re-ordered memory map may provide for reduced energy consumption by the memory devices, or a balance of energy consumption and performance speed for latency tolerant processes.