Abstract:
A system for the coexistence between a plurality of wireless communication modules sharing a single antenna includes an antenna, first and second transceiving paths, and first and second wireless communications modules. The first wireless communications module is coupled to a first transceiving path and transmits or receives first wireless signals via the first transceiving path. The second wireless communications module is coupled to the second transceiving path and transmits and receives second wireless signals via the first and the second transceiving paths, wherein signal strengths of the second wireless signals passing through the second transceiving path are attenuated by a certain level, and the attenuated second wireless signals are added to the first wireless signals when passing through the first transceiving path, wherein one of the first and the second communications module is a LTE module and the other one is a WLAN module.
Abstract:
A frequency selective circuit includes a first transistor, an impedance element, a first capacitive element, a second capacitive element, a second capacitive and a second transistor. The first transistor includes a first terminal, a second terminal and a control terminal. The impedance element is coupled between the first terminal and the control terminal of the first transistor. The first capacitive element is coupled to the first terminal of the first transistor. The second capacitive element is coupled to the control terminal of the first transistor. The second transistor includes a first terminal, a second terminal and a control terminal, wherein the control terminal of the second transistor is coupled to the control terminal of the first transistor.
Abstract:
An electrostatic discharge (ESD) protection circuit is provided. The ESD protection circuit includes an impedance device coupled between a pad and a power line and a clamp unit coupled between the pad and a ground line.
Abstract:
An electrostatic discharge (ESD) protection circuit is provided. The ESD protection circuit includes an impedance device coupled between a pad and a power line and a clamp unit coupled between the pad and a ground line, wherein no ESD current flows through the impedance device when an ESD event occurs at the pad.
Abstract:
A method of fabricating an integrated circuit is also provided. The method includes forming a first polysilicon region having an initial grain size on a substrate. The first polysilicon region is implanted with a first dopant of a first conductivity type and a second dopant. After the implantation, the first polysilicon region has a first grain size larger than the initial grain size. Then, a laser rapid thermal annealing process is performed to the first polysilicon region.
Abstract:
A frequency selective circuit includes a first transistor, an impedance element, a first capacitive element, a second capacitive element, a second capacitive and a second transistor. The first transistor includes a first terminal, a second terminal and a control terminal. The impedance element is coupled between the first terminal and the control terminal of the first transistor. The first capacitive element is coupled to the first terminal of the first transistor. The second capacitive element is coupled to the control terminal of the first transistor. The second transistor includes a first terminal, a second terminal and a control terminal, wherein the control terminal of the second transistor is coupled to the control terminal of the first transistor.
Abstract:
A digital circuit comprises a plurality of functional circuits and a finite state machine. Each functional circuit comprises a digital macro, a resistance control device and at least one device with capacitance. The digital macro is coupled to a ground. The resistance control device is electrically connected between the digital macro and an always-on power mesh. The at least one device with capacitance is electrically connected between the resistance control device and the ground. The finite state machine is electrically connected to the resistance control device, and is configured to adjust the resistance of the resistance control device.
Abstract:
The present invention provides a semiconductor capacitor structure. The semiconductor capacitor structure comprises a first metal layer, a second metal layer and a first dielectric layer. The first metal layer is arranged to be a part of a first electrode of the semiconductor capacitor structure, and the first metal layer comprises a first portion and a second portion. The first portion is formed to have a first pattern, and the second portion is connected to the first portion. The second metal layer is arranged to be a part of a second electrode of the semiconductor capacitor structure, and the first dielectric layer is formed between the first metal layer and the second metal layer.
Abstract:
A signal processing circuit with noise cancellation includes an impedance matching unit and a transconductance stage. The impedance matching unit is disposed at a first path, and arranged to provide input impedance matching, wherein the impedance matching unit is a passive element, and the first path is coupled between a signal input port and a signal output port. The transconductance stage is disposed at a second path, and arranged to guide circuit introduced noise to the signal output port for noise cancellation at the signal output port, wherein the second path is coupled between the signal input port and the signal output port.