Abstract:
An interference observation apparatus includes a light source, a splitting beam splitter, a combining beam splitter, a mirror, a beam splitter, a mirror, a piezo element, a stage, a photodetector, an image acquisition unit, and a current control unit. An interference optical system from the splitting beam splitter to the combining beam splitter forms a Mach-Zehnder interferometer. The current control unit controls a wavelength of laser light output from the light source to adjust a phase difference between two split light components at the combining by the combining beam splitter.
Abstract:
A spectroscopic measurement apparatus includes a light source, a diffraction grating being a spectroscopic unit, a spatial filter unit, a detection unit, and an analysis unit. The diffraction grating spatially disperses light from the light source, and outputs the light to different optical paths according to a wavelength. The spatial filter unit inputs the light from the diffraction grating to different positions according to the wavelength, applies loss depending on the wavelength to the light, and outputs the light. The detection unit detects the intensity of the light from the spatial filter unit. The analysis unit obtains the intensities of light in an absorption band and light in a non-absorption band of a component in a measurement sample on an optical path between the light source and the detection unit based on the detection result, and evaluates the component in the measurement sample.
Abstract:
A cell sample measurement apparatus includes a sample stage for placing an object cell sample containing a plurality of cells cultured on a culture dish, an evaluation light irradiation unit for irradiating N irradiation regions set by dividing a culture region in the object cell sample with evaluation light having a wavelength in a mid-infrared region with irradiation amounts different from each other, a dead cell number measurement unit for measuring a dead cell number generated according to the irradiation amount of the evaluation light in each of the N irradiation regions, and a culture state analysis unit for obtaining, for the object cell sample, an object correlation between the irradiation amount of the evaluation light and the dead cell number for the N irradiation regions serving as an index of evaluation of a culture state of the object cell sample.
Abstract:
Provided is an observation target cover for interference observation using first light and second light having a coherent length longer than that of the first light so as to acquire an interference light image of an observation target by the first light while adjusting an optical path length difference based on an interference result of the second light, the observation target cover including: a transmission reflection portion that transmits the first light and reflects the second light; and a support portion for supporting the transmission reflection portion so that a placement surface on which the observation target is placed and the transmission reflection portion face each other with a predetermined gap therebetween.
Abstract:
A cell stimulation method includes continuously emitting mid-infrared light to a living cell and thus changing an ion concentration of the cell or changing ion concentrations of the cell and other cells disposed around the cell.
Abstract:
An interference observation apparatus includes a light source which outputs incoherent light, a beam splitter, a sample holding table, an objective lens, a reference mirror, a lens, an aberration correction plate, a piezo element, a tube lens, a beam splitter, an imaging unit, a photodetector, an image acquisition unit, and a control unit. The control unit obtains an interference intensity of combined light on the basis of a detection signal output from the photodetector, and adjusts an interference optical system to increase the interference intensity.
Abstract:
The identification apparatus includes a quantitative phase image acquisition unit, a feature quantity extraction unit, a learning unit, a storage unit, and an identification unit. The feature quantity extraction unit extracts a feature quantity of a quantitative phase image of a cell. The learning unit performs machine learning for a quantitative phase image of a known cell of which a type is known based on the feature quantity extracted by the extraction unit. The storage unit stores a result of the machine learning by the learning unit. The identification unit determines, based on the feature quantity extracted by the extraction unit for the quantitative phase image of an unknown cell of which a type is unknown, the type of the unknown cell using the learning result stored by the storage unit.
Abstract:
The present invention provides a method for determining differentiation level of pluripotent stem cell, comprising a step of determining a flatness of cultured pluripotent stem cell, wherein the flatness is an indication.
Abstract:
An aggregated cell evaluation apparatus includes a laser light source, a speckle image acquisition unit, an SC calculation unit, an evaluation unit, and a memory unit. The speckle image acquisition unit acquires a two-dimensional speckle image by forward scattered light generated in aggregated cells by irradiation of the aggregated cells with laser light output from the laser light source. The SC calculation unit calculates a speckle contrast value Kn of a speckle image In at each time tn, determines a maximum value Kmax among the speckle contrast values K1 to KN, and normalizes the speckle contrast value Kn at each time tn by the maximum value Kmax to obtain a normalized speckle contrast value Kn′. The evaluation unit evaluates motion of the aggregated cells, based on the normalized speckle contrast value Kn′ at each time tn.