Abstract:
Provided is a thin film transistor. The thin film transistor according to an embodiment of the present invention may include a source electrode and a drain electrode buried in a first flexible substrate, a semiconductor layer disposed on the first flexible substrate to be positioned between the source electrode and the drain electrode, a gate insulating layer completely cover the semiconductor layer, and a gate electrode facing the semiconductor layer on the gate insulating layer.
Abstract:
Provided are a dual-mode display device and a method of manufacturing the same. The device includes a lower substrate, an upper substrate facing the lower substrate, a thin-film transistor portion between the upper substrate and the lower substrate, a first anode on one side of the thin-film transistor portion, a first cathode between the first anode and the upper substrate, an organic light-emitting layer between the first cathode and the first anode, a second anode on the other side of the thin-film transistor portion, a second cathode between the second anode and the upper substrate, or the second anode and the lower substrate, and a optical switching layer between the second cathode and the second anode.
Abstract:
A display panel includes pixels connected to each of gate lines and data lines. Each of the pixels includes a first transistor connected between a corresponding data line among the data lines and a first node and configured to deliver a data signal of the corresponding data line to the first node in response to an input signal received through a corresponding gate line among the gate lines, a reflective element circuit connected to the first node, and configured to implement the reflective mode in response to a signal of the first node when a first mode selection signal indicates a reflective mode, an emissive element circuit connected to a second node, and configured to implement the emissive mode in response to the signal of the first node when the mode selection mode indicates an emissive mode.
Abstract:
Provided is a complex display device Including a first substrate and an opposed second substrate, a first electrode, an electrochromic layer, a common electrode, an emission part and a second electrode, laminated between the first substrate and the second substrate one by one, and an organic layer disposed between the first electrode and the electrochromic layer, or between the electrochromic layer and the common electrode. The organic layer of the complex display device may include at least one of a hole injection material, a hole transport material and a mixture thereof, or at least one of an electron injection material, an electron transport material or a mixture thereof.
Abstract:
Provided is a display device. The display device includes a lower display element where a substrate, a first lower electrode, a liquid crystal part, and a second lower electrode are sequentially stacked, an upper display element stacked vertical to the lower display element, where a first upper electrode, a light emitting part, a second upper electrode, and a protective part are sequentially stacked, and a middle part configured to deliver a driving signal to the lower and upper display elements, between the lower and upper display elements.
Abstract:
Provided are a random wrinkle structure-formable compound, a composition including the same, a film including a random wrinkle structure, a method of forming the film, and an organic light emitting device including the film. A compound according to the present invention is coated and then, a film having a surface structure of random wrinkles may be simply formed through simple ultraviolet (UV) curing or thermosetting. When the film thus formed is used in an organic light emitting device, light generated from the organic light emitting device is scattered on surfaces of the random wrinkles to prevent light guide or total reflection, and thus, light is extracted to the outside. That is, a random structure disposed at the outside of the device performs a light extraction function and consequently, light efficiency of the organic light emitting device may be increased.
Abstract:
A dual-mode display including a substrate and a multiple sub-pixels on the substrate, in which each sub-pixel includes, a color selection reflector, and an optical shutter disposed on the color selection reflector, and an emissive devised disposed on the shutter, wherein the emissive device includes a cathode and an anode, and the cathode and the anode include a carbon-based material including graphene sheets, graphene flakes, and graphene platelets, and a binary or ternary transparent conductive oxide including indium oxide, tin oxide, and zinc oxide.
Abstract:
Provided is a metal oxide thin film forming method including: vaporizing a first metal oxide precursor; allowing the vaporized first metal oxide precursor to flow into a mixture chamber by using a first carrier gas; injecting the flowed first metal oxide precursor on a substrate through a micro nozzle connected to the mixture chamber to form a first metal oxide precursor layer on the substrate; and emitting electromagnetic waves to the first metal oxide precursor layer to form a first metal oxide layer.
Abstract:
Provided is a display device and a method of manufacturing the same. The display device includes a thin film transistor, a first electrode electrically connected to the thin film transistor, a self-light emitting pixel layer disposed on the first electrode, a second electrode disposed on the self-light emitting pixel layer, a substrate in which an auxiliary wire is buried, the substrate being disposed on the second electrode, and a reflective pixel layer disposed on the substrate.
Abstract:
Provided is a method of manufacturing a flexible substrate allowing an electronic device to be mounted thereto. The method of manufacturing a flexible substrate allowing an electronic device to be mountable thereto, includes preparing a substrate, applying a force to the substrate to stretch the substrate in horizontal direction, performing a surface treatment process on the substrate and forming a first region having a plurality of wavy surfaces, and forming an electrode on the first region.