Abstract:
Provided is a method of fabricating a light scattering layer. The method includes: coating a first surface of a substrate with a nano structure; and etching the substrate exposed to the nano structure by using the nano structure as an etching mask to allow the first surface of the substrate to have a recess to form first partitions protruding from the first surface of the substrate.
Abstract:
Provided is a method of manufacturing an organic light-emitting device including a graphene layer. The method of manufacturing an organic light-emitting device according to the present invention may include providing a graphene donor unit including a patterned graphene layer, providing a device unit, and attaching the graphene layer of the graphene donor unit to an organic part. The device unit may include a substrate, a lower electrode, and the organic part which are sequentially stacked, and the organic part may include a dopant. The graphene donor unit may include the graphene layer, a release layer, and an elastic stamp layer which are sequentially stacked.
Abstract:
A dual-mode display including a substrate and a plurality of sub-pixels on the substrate, in which each sub-pixel includes, a reflective device having an optical filter function which reflects different color according to electrical signals applied from outside the display, and an emissive device disposed on the reflective device, wherein the emissive device includes a cathode and an anode, and the cathode and the anode include a carbon-based material including graphene sheets, graphene flakes, and graphene platelets, and a binary or ternary transparent conductive oxide including indium oxide, tin oxide, and zinc oxide.
Abstract:
Provided is an organic light emitting diodes (OLED) and method of manufacturing the OLED. The OLED includes: a substrate; a light scattering layer having an uneven shape on the substrate; a transparent electrode film provided directly on and in contact with the light scattering layer; an organic light emitting layer on the transparent electrode film; and an electrode on the organic light emitting layer.The method of manufacturing the OLED includes: disposing a light scattering layer on a substrate; providing a transparent electrode film on the light scattering layer; and transferring the transparent electrode film to be directly on and in contact with the light scattering layer.
Abstract:
Provided is a dual-mode display including a substrate and a plurality of sub-pixels on the substrate, in which each sub-pixel includes an emissive device, a color selection reflector disposed on one side of the emissive device, and an optical shutter disposed on another side of the emissive device, wherein the emissive device includes a cathode and an anode, and the cathode and the anode include a carbon-based material including graphene sheets, graphene flakes, and graphene platelets, and a binary or ternary transparent conductive oxide including indium oxide, tin oxide, and zinc oxide.
Abstract:
Provided are an electronic device and a fabrication method thereof. The electronic device according to the concept of the present invention includes auxiliary interconnections disposed on a substrate, a light extraction layer that is provided on the substrate and fills between the auxiliary interconnection, and a first electrode provided on the auxiliary interconnections and the light extraction layer, wherein the light extraction layer may have a first surface facing the substrate and a second surface opposite to the first surface, the first surface may have protrusions, and the auxiliary interconnections may include a material having a lower resistance than the first electrode. Since electrical properties of the electronic device are improved, uniform light emission characteristics may be realized.
Abstract:
Provided is an organic light emitting diodes (OLED) and method of manufacturing the OLED. The OLED includes: a substrate; a light scattering layer having an uneven shape on the substrate; a transparent electrode film provided directly on and in contact with the light scattering layer; an organic light emitting layer on the transparent electrode film; and an electrode on the organic light emitting layer. The method of manufacturing the OLED includes: disposing a light scattering layer on a substrate; providing a transparent electrode film on the light scattering layer; and transferring the transparent electrode film to be directly on and in contact with the light scattering layer.
Abstract:
Provided are an optical device and a manufacturing method thereof. The method of manufacturing an optical device may include providing a substrate structure, and depositing an array including curved structures on the substrate structure. The curved structures may include a crystalline organic compound.
Abstract:
Provided is a display device and a method of manufacturing the same. The display device includes a reflective display part including a first cathode electrode and a first anode electrode and a liquid crystal layer, a light emitting display part including a second cathode electrode and a second anode electrode and a light emission film, and a thin film transistor part being electrically connected to the first and second anode electrodes. The light emitting display part further includes a bank disposed on one side of the second anode electrode between the second anode electrode and the light emission film.
Abstract:
Provided is a display device including a pixel array configured to include a reflective pixel unit including one or more reflective sub pixels and an emissive pixel unit including one or more emissive sub pixels, wherein the reflective pixel unit and the emissive pixel unit are combined to allow the reflective sub pixel and the emissive sub pixel to be included in one coordinate; an image determination circuit configured to generate a determination signal according to a characteristic of an image; a gate driver configured to generate a gating signal for activating at least one of the reflective sub pixel and the emissive sub pixel in one coordinate based on to the generated determination signal; and a data driver configured to provide a driving signal to the pixel array by referring to image data and the generated gating signal.