Abstract:
Provided are a semiconductor device, a display panel, and a display device including the same. The semiconductor device includes a lower electrode on one side of a substrate, a spacer on another side of the substrate, a middle electrode on the spacer, a lower channel layer on portions of a sidewall of the spacer, the middle electrode, and the lower electrode, a lower gate insulating layer on the lower channel layer, a common gate electrode on the gate insulating layer, an upper gate insulating layer on the common gate electrode, an upper electrode on the spacer and the upper gate insulating layer of the middle electrode, an upper channel layer connected to the upper electrode and disposed on a sidewall of the upper gate insulating layer, and a contact electrode connected to a portion of the upper channel layer and passing through the lower gate insulating layer and the upper gate insulating layer outside the common gate electrode so as to be connected to the lower electrode.
Abstract:
Provided is a method for manufacturing an electronic device including a transparent conductive structure, the method including preparing a transparent electrode in which, among a first region and a second region, the first region is selectively surface-modified, preparing a mixed composition including a first composition and a second composition having a different polarity from the first composition, and applying the mixed composition onto the transparent electrode, wherein the applied mixed composition is disposed in the surface modified first region, and the mixed composition disposed in the first region is phase-separated into a first composition layer and a second composition layer disposed on the first composition layer.
Abstract:
Provided is an organic light emitting diodes (OLED) and method of manufacturing the OLED. The OLED includes: a substrate; a light scattering layer having an uneven shape on the substrate; a transparent electrode film provided directly on and in contact with the light scattering layer; an organic light emitting layer on the transparent electrode film; and an electrode on the organic light emitting layer. The method of manufacturing the OLED includes: disposing a light scattering layer on a substrate; providing a transparent electrode film on the light scattering layer; and transferring the transparent electrode film to be directly on and in contact with the light scattering layer.
Abstract:
Provided are a metal oxide solution in organic solvent for a high refractive film, a method of preparing the same, and a method of fabricating a high refractive film using the same. The method of preparing the metal oxide solution in organic solvent for fabricating a high refractive film includes preparing a metal oxide precursor, preparing an organic solvent containing a carbonyl group, forming a metal oxide through a sol-gel reaction of the metal oxide precursor in the organic solvent in the presence of an acidic catalyst, and reacting the metal oxide and the organic solvent. The hydrogen bonding between the metal oxide and the organic solvent occurs.
Abstract:
The inventive concept provides organic light emitting diodes and methods of manufacturing an organic light emitting diode. The organic light emitting diode includes a substrate, a first electrode layer and a second electrode layer formed on the substrate, an organic light emitting layer disposed between the first electrode layer and the second electrode layer and generating light, and a scattering layer between the first electrode layer and the substrate or between the first electrode layer and the organic light emitting layer. The scattering layer scatters the light.
Abstract:
A thin film transistor includes a first gate electrode on a substrate, a gate insulating film on the first gate electrode, a first active layer on the gate insulating film, a drain electrode on one side of the first active layer, a sidewall spacer on a side wall of the drain electrode, and a first source electrode provided on the other side of the first active layer and a sidewall of the sidewall spacer.
Abstract:
Disclosed is an active meta device. The device includes a metal reflective plate, an insulating layer on the metal reflective plate, a first modulation line block provided on one side of the insulating layer, and a second modulation line block provided on another side of the insulating layer facing the first modulation line block.
Abstract:
Provided are stretchable electronics and a method for manufacturing the same. The stretchable electronics may include a substrate, a plurality of electronic elements disposed to be spaced apart from each other on the substrate, and a wire structure disposed on the substrate to connect the plurality of electronic elements to each other. The wire structure may include an insulator extending from one of the electronic elements to the other of the adjacent electronic elements and a metal wire configured to cover a top surface and side surfaces of the insulator. The insulator may include at least one bent part in a plan view.
Abstract:
Provided is a light emitting device including a lower electrode, an upper electrode disposed to face the lower electrode, a quantum dot light emitting layer between the lower electrode and the upper electrode, an electron transport layer between the lower electrode and the quantum dot light emitting layer, and a hole transport layer between the upper electrode and the quantum dot light emitting layer, wherein the quantum dot light emitting layer includes a quantum dot, and a first ligand on a surface of the quantum dot, and a second ligand on the surface of the quantum dot.
Abstract:
Provided is a pressure sensitive display device including a sensing substrate, a reaction substrate provided on the sensing substrate, and spacers provided between the sensing substrate and the reaction substrate to space the sensing substrate apart from the reaction substrate. Here, the sensing substrate includes a flexible substrate and a touch electrode provided on one surface of the flexible substrate, which faces the reaction substrate. The reaction substrate includes a transparent substrate, a transparent electrode provided on one surface of the transparent substrate, which faces the sensing substrate, and a light emitting layer disposed on the transparent electrode.