Abstract:
Provided is a low frequency vibrating actuator device including an actuator configured to generate a vibration by receiving a voltage, a spring structure disposed on the actuator, and a vibrating mass part disposed on the spring structure. Here, the spring structure includes a first thin-film, a first spacer disposed between the first thin-film and the actuator, and a second spacer disposed between the first thin-film and the vibrating mass part. Also, the first spacer and the second spacer are horizontally offset from each other.
Abstract:
According to an exemplary embodiment of the present invention, by providing an apparatus for fabricating a stretchable electronic element including a chamber, a plurality of sample portions loaded into the chamber and spaced apart from each other, while the chamber is maintained at atmospheric pressure, and a movable member moving the plurality of sample portions and compressing each of the plurality of sample portions together while the chamber is kept under vacuum, it is possible to fabricate variable stretchable electronic elements.
Abstract:
The inventive concept provides an organic electronic device and a method of fabricating the same. The organic electronic device includes a flexible substrate configured to include a first region and a second region which are laterally spaced apart from each other, an organic light-emitting diode disposed in the first region of the flexible substrate, and a photodetector disposed in the second region of the flexible substrate, wherein the organic light-emitting diode and the photodetector are disposed on the same plane.
Abstract:
A thin film transistor includes a first gate electrode on a substrate, a gate insulating film on the first gate electrode, a first active layer on the gate insulating film, a drain electrode on one side of the first active layer, a sidewall spacer on a side wall of the drain electrode, and a first source electrode provided on the other side of the first active layer and a sidewall of the sidewall spacer.
Abstract:
Provided are stretchable electronics and a method for manufacturing the same. The stretchable electronics may include a substrate, a plurality of electronic elements disposed to be spaced apart from each other on the substrate, and a wire structure disposed on the substrate to connect the plurality of electronic elements to each other. The wire structure may include an insulator extending from one of the electronic elements to the other of the adjacent electronic elements and a metal wire configured to cover a top surface and side surfaces of the insulator. The insulator may include at least one bent part in a plan view.
Abstract:
Provided is a pressure sensitive display device including a sensing substrate, a reaction substrate provided on the sensing substrate, and spacers provided between the sensing substrate and the reaction substrate to space the sensing substrate apart from the reaction substrate. Here, the sensing substrate includes a flexible substrate and a touch electrode provided on one surface of the flexible substrate, which faces the reaction substrate. The reaction substrate includes a transparent substrate, a transparent electrode provided on one surface of the transparent substrate, which faces the sensing substrate, and a light emitting layer disposed on the transparent electrode.
Abstract:
A method of fabricating a display apparatus includes forming a lower electrode on a lower substrate, forming a partition structure and an ink-injection tube connected to one end of the partition structure, the partition structure including first partitions, and second partitions, and cell regions defined by the first and second partitions, covering the partition structure with an upper electrode, and injecting an electronic ink through the ink-injection tube to fill the cell regions of the partition structure.
Abstract:
Provided are a semiconductor device, a display panel, and a display device including the same. The semiconductor device includes a lower electrode on one side of a substrate, a spacer on another side of the substrate, a middle electrode on the spacer, a lower channel layer on portions of a sidewall of the spacer, the middle electrode, and the lower electrode, a lower gate insulating layer on the lower channel layer, a common gate electrode on the gate insulating layer, an upper gate insulating layer on the common gate electrode, an upper electrode on the spacer and the upper gate insulating layer of the middle electrode, an upper channel layer connected to the upper electrode and disposed on a sidewall of the upper gate insulating layer, and a contact electrode connected to a portion of the upper channel layer and passing through the lower gate insulating layer and the upper gate insulating layer outside the common gate electrode so as to be connected to the lower electrode.
Abstract:
Disclosed is a vibration stimulation device. The vibration stimulation device includes a box having a cavity, vibrators disposed in the cavity; light emitting elements disposed between the vibrators or disposed on the vibrators, an upper vibration layer configured to connect the vibrators and the light emitting elements to edges of the box on the cavity, and bumps disposed on the vibrators.
Abstract:
The present disclosure relates to a memory device, and more particularly, to a memory device including a substrate, a plurality of vertical structures disposed on the substrate and including insulation layers and lower electrodes, which are alternately laminated with each other, wherein the vertical structures are aligned in a first direction parallel to a top surface of the substrate and a second direction crossing the first direction, an upper electrode disposed on a top surface and side surfaces of each of the vertical structures, and a first dielectric layer disposed between the upper electrode and the vertical structures to cover the top surface and the side surfaces of each of the vertical structures. Here, the first dielectric layer includes a ferroelectric material.