Abstract:
The present disclosure provides an electronic paper touch panel, its controlling method and a display device. The electronic paper touch panel includes a first substrate where a first electrode layer is formed, a second substrate where a second electrode layer is formed, and an electronic ink layer arranged between the first electrode layer and the second electrode layer. The second electrode layer on the second substrate includes a plurality of electrode units arranged separate from each other, and each electrode unit is connected to a signal line. The signal line is configured to input a touch signal to each electrode unit at a touch time period, and input a display signal to each electrode unit at a display time period.
Abstract:
An electrophoresis display device includes an element substrate (first substrate); a counter substrate (second substrate) arranged facing the element substrate; an electrophoresis layer arranged between the element substrate and the counter substrate and which includes a dispersion liquid which contains electrophoretic particles and a dispersion medium in which the electrophoretic particles are dispersed; a dividing wall arranged to partition the electrophoresis layer into a plurality of cells; and a sealing layer arranged between the counter substrate and the dividing wall. The sealing layer has a modulus of elasticity at 25° C. of 1 MPa or more to 100 MPa or less.
Abstract:
An electro-optic display, having at least one pixel capable of achieving any one of at least four different gray levels including two extreme optical states, is driven by displaying a first image on the display, and rewriting the display to display a second image thereon, wherein, during the rewriting of the display, any pixel which has undergone a number of transitions exceeding a predetermined value without touching an extreme optical state, is driven to at least one extreme optical state before driving that pixel to its final optical state in the second image.
Abstract:
A reflective display apparatus including at least one front-light module, a first frame, a first liquid, and a display unit is provided. The at least one front-light module includes a light source and a light guide plate. The light source is adapted for providing an illumination beam. The first frame connects with the light guide plate of the at least one front-light module. The display unit, the first frame, the at least one front-light module form a first containing space and the first liquid is injected into the first containing space. Besides, a manufacturing method of the reflective display apparatus is also provided.
Abstract:
A front plane laminate useful in the manufacture of electro-optic displays comprises, in order, a light-transmissive electrically-conductive layer, a layer of an electro-optic medium in electrical contact with the electrically-conductive layer, an adhesive layer and a release sheet. This front plane laminate can be prepared as a continuous web, cut to size, the release sheet removed and the laminate laminated to a backplane to form a display. Methods for providing conductive vias through the electro-optic medium and for testing the front plane laminate are also described.
Abstract:
A display apparatus and a display apparatus manufacturing method are provided with which a favorable display quality can be obtained by preventing an air bubble from entering. The display apparatus in the invention includes a circuit board including a display portion and a peripheral circuit portion provided at the periphery of the display portion, a display sheet layer, an adhesion layer that adheres the display sheet to the circuit board, and a common electrode that is provided on the display sheet and can apply a voltage to the display sheet between the common electrode and the pixel electrode. A surface of the circuit board to which the display sheet is adhered through the adhesion layer has a recess-and-projection structure including recess portions and projecting portions. The recess-and-projection structure is formed so as to reach an outer edge of the peripheral circuit portion, as viewed in a plan view.
Abstract:
An electro-optic display, having at least one pixel capable of achieving any one of at least four different gray levels including two extreme optical states, is driven by displaying a first image on the display, and rewriting the display to display a second image thereon, wherein, during the rewriting of the display, any pixel which has undergone a number of transitions exceeding a predetermined value without touching an extreme optical state, is driven to at least one extreme optical state before driving that pixel to its final optical state in the second image.
Abstract:
The present invention provides a color display device in which each pixel or sub-pixel can display four high quality color states. More specifically, an electrophoretic fluid is provided which comprises four types of particles, dispersed in a solvent or solvent mixture. The fluid may further comprise substantially uncharged neutral buoyancy particles.
Abstract:
This invention relates to electrophoretic fluids, the use of these fluids for the preparation of an electrophoretic display device, and electrophoretic displays comprising such fluids.
Abstract:
The present invention is directed to a composition for the dielectric layer, which composition comprises a mixture of conductive filler material wherein said mixture consists of carbon nanotubes and graphite, and the dielectric layer formed comprises 0.01% to 7% by weight of carbon nanotubes and 0.1% to 20% by weight of graphite. The composition of the present invention may form a dielectric layer which has the desired electrical resistivity. In addition, the dielectric layer is expected to show better barrier properties, less moisture and temperature dependence and improved anisotropic properties.