Abstract:
An embodiment is to provide a technique that continuously applies a certain amount of an electron beam to a sample by selecting a beam applied to the sample from an electron beam emitted from an electron source in a scanning electron microscope. A charged particle apparatus is configured, including: a mechanism that detects the distribution of electric current strength with respect to the emitting direction of an electron beam emitted from an electron source; a functionality that predicts a fluctuation of an electric current applied to a sample by predicting the distribution of the electric current based on the detected result; a functionality that determines a position at which a beam applied to the sample is acquired based on the predicted result; and a mechanism that controls a position at which a probe beam is acquired based on the determined result.
Abstract:
A system of measuring ion beam current in a process chamber using conductive liners is disclosed. A conductive liner is used to shield the walls of the process chamber. An ion measuring device, such as an ammeter, is used to measure the current created by the ions that impact the conductive liner. In some embodiments, a mechanism to contain secondary electrons generated in the process chamber is employed. Additionally, the ions that impact the scan system or workpiece may also be measured, thereby allowing the current of the entire ion beam to be measured.
Abstract:
A proton beam collimator comprising (a) titanium or (b) stainless steel containing no tungsten or (c) containing no tungsten or brass. The collimator comprises a multi-leaf collimator (MLC). The apparatus further comprises an integrated circuit (IC) mounted adjacent the collimator, the IC subject to exposure to atomic particles, illustratively, neutrons.
Abstract:
In a particle beam irradiation method and a particle beam irradiation apparatus in which depth direction irradiation field spread and lateral direction irradiation field spread are performed, an irradiation dose in each of irradiation layers of an irradiation target is made substantially constant, and control is simplified.The depth direction irradiation field spread is made the active irradiation field spread in which plural irradiation layers having different ranges in an irradiation direction of the particle beam are superimposed, the lateral direction irradiation field spread is made the active irradiation field spread in which irradiation spots of the particle beam are superimposed in the lateral direction, and a bolus having a shape along a deepest part of the irradiation target in the depth direction is disposed to cross the particle beam.
Abstract:
A particle isolation system includes a semiconductor process chamber; at least one member within the semiconductor process chamber wherein the member has at least a first position and a second position; and at least one isolation compartment having a plurality of walls, the isolation compartment defined by the plurality of walls, at least one of the plurality of walls of the isolation compartment defining at least one opening wherein the member in the first position permits particles to enter the isolation compartment from the semiconductor process chamber through the opening, and wherein the member in the second position substantially encloses the isolation compartment thereby substantially retaining the particles in the isolation compartment and substantially limiting movement of the particles between the semiconductor process chamber and the isolation compartment through the opening. An ion implant system is also provided.
Abstract:
The invention describes a particle source in which energy selection occurs. The energy selection occurs by sending a beam of electrically charged particles 13 eccentrically through a lens 6. As a result of this, energy dispersion will occur in an image 15 formed by the lens 6. By projecting this image 15 onto a diaphragm 7, it is possible to only allow particles in a limited portion of the energy spectrum to pass. Consequently, the passed beam 16 will have a reduced energy spread. By adding a deflection unit 10, this particle beam 16 can be deflected toward the optical axis 2. One can also elect to deflect a beam 12 going through the middle of the lens 6—and having, for example, greater current—toward the optical axis.
Abstract:
In an ion implantation system including (a) an ion source (b) a mass analyzing portion, (c) an ion acceleration portion, (d) an ion beam focusing/deflecting portion, and (e) an end station chamber for implanting ions onto a semiconductor substrate. The ion source consists of plural ion sources being connected to the same mass analyzing portion in which any one of the plural ion sources is selected. Mass-separated ions from the ion source are led to the acceleration portion, and a stencil mask is arranged approximately to the semiconductor substrate in the end station chamber.
Abstract:
An examining system for imaging an object positionable in an object plane, includes an illumination device for supplying energy to a delimited field of the object such that charged particles emerge from locations of the field, the field being displaceable in the plane of the object, a first deflector for providing a variable deflection field for guiding charged particles emerging from locations of a selectable region of the object through a fixed, predetermined beam cross-section, and a position-sensitive detector disposed in the beam path such that the charged particles, after having passed through the first deflector, impinge on the position-sensitive detector, wherein particles emerging from different locations of the region are imaged on different locations of the position-sensitive detector which are allocated to the locations of emergence.
Abstract:
Disclosed is equipment for charged-particle beam lithography capable of executing exposure even when an electron beam with a bad property is produced due to a failure in some multibeam forming element, without replacing the failing multibeam forming element and without reducing the exposure accuracy. The equipment includes means for forming a plurality of charged-particle beams arranged at predetermined intervals; a plurality of blankers which act on the plurality of charged-particle beams individually; a common blanker which acts on all of the plurality of charged-particle beams; and a blanking restriction for causing those charged-particle beams which are given predetermined deflection by the plurality of blankers to reach onto a sample, with a signal applied to the common blanker, and blocking those charged-particle beams which are not given the predetermined deflection by the plurality of blankers to the sample. The equipment blocks beams with bad properties to the sample and executes exposure using only those beams which have bad properties.
Abstract:
This invention provides a multielectron gun which generates a plurality of electron beams having uniform characteristics. A multielectron gun (2) is formed of a plurality of electron guns (2a-2c). The electron gun (2a) has, in addition to an electron source (21a), Wehnelt electrode (22a), and anode electrode (23), a shield electrode (24) between the Wehnelt electrode (22a) and anode electrode (23). The shield electrode reduces field interference among the electron guns.