Abstract:
Technology for device discovery using a device-to-device (D2D) sounding reference signal (SRS) and device discovery using D2D SRS in a channel measurement group (CMG) is disclosed. In an example, a user equipment (UE) configured for device discovery via a node using the D2D SRS can include a transceiver module. The transceiver module can send a radio resource control (RRC) device discovery request to a node, scan D2D SRS subframes of proximity UEs using D2D SRS triggering, and send feedback to the node of detected D2D SRS information of the proximity UEs. The proximity UE can be located within a same cell as the UE.
Abstract:
Disclosed embodiments include an end-to-end UE and eNB HARQ protocol design for various TDD−FDD joint operation wireless network configurations. Designs for timing of HARQ feedback in response to PDSCH and PUSCH transmissions (or simply, PDSCH and PUSCH) include both HARQ feedback from a UE, and HARQ feedback from an eNB. The PUSCH HARQ timeline embodiments also include both self-scheduling and cross-carrier scheduling scenarios for PUSCH transmissions. In addition, designs for the cross-carrier scheduling scenarios contemplate an FDD scheduling cell or a TDD scheduling cell.
Abstract:
At least one neighbor cell is identified by a base station by detecting a synchronization signal of the at least one neighbor cell. A received signal power, such as a Reference Signal Received Power (RSRP) or a Reference Signal Received Quality (RSRQ), or a combination thereof, is also measured from the at least one neighbor cell. Identifying information and the received signal power of the at least one neighbor cell is then communicated to a network entity of the wireless network. Information is received from the network entity indicating whether the base station can enable a reconfiguration of the allocation of uplink and downlink subframes used in the cell of the base station. Based on the information received from the network entity, the base station enables a reconfiguration of the allocation of uplink and downlink subframes used in the cell.
Abstract:
Technology to provide conditional physical uplink control channel (PUCCH) resource allocation in time division duplex (TDD) for a hybrid automatic retransmission request-acknowledge (HARQ-ACK) transmission in a subframe n is disclosed. In an example, a user equipment (UE) can include computer circuitry configured to: Receive a downlink control channel within a prior specified subframe, wherein the prior specified subframe occurs in time before the subframe n; recognize a downlink control channel type received within the prior specified subframe is a physical downlink control channel (PDCCH) or an enhanced physical downlink control channel (EPDCCH); determine a PUCCH resource for the HARQ-ACK transmission using a lowest control channel element (CCE) index of the PDCCH when the received downlink control channel type is the PDCCH; and determine the PUCCH resource for the HARQ-ACK transmission using a lowest enhanced CCE (ECCE) index of the EPDCCH when the received downlink control channel type is the EPDCCH.
Abstract:
A method includes receiving at user equipment an indication of a subset of scheduling constraints for interference mitigation and cancelation and performing interference mitigation and cancelation utilizing the subset of scheduling constraints.
Abstract:
Disclosed embodiments may include an apparatus having one or more processors coupled to one or more computer-readable storage media. The one or more processors may be configured to transmit and/or receive channel state information reference signal (CSI-RS) resource configuration information, demodulation reference signals (DM-RS), uplink sounding reference signals (SRS), and power control parameters to support uplink coordinated multi-point (CoMP) operations. Other embodiments may be disclosed.
Abstract:
A system and a method for a mobility measurement in a wireless network comprises determining at a wireless terminal a channel power estimation ES for a carrier signal based on Channel State Information Reference Signals (CSI-RS), and determining at the wireless terminal a noise plus interference I+N for the carrier signal based on a muted CSI-RS. The carrier signal is an additional carrier without the presence of a Cell-specific Reference Signal. In one exemplary embodiment, the periodicity of the CSI-RS is selected to be 1, 2 or 3 subframes.
Abstract:
Embodiments of the present disclosure describe devices, methods, computer-readable media and systems configurations for determining a hybrid automatic repeat request (HARQ)-acknowledgment (ACK) codebook in wireless communication networks.
Abstract:
Embodiments of the present disclosure describe methods, apparatuses, and systems related to use of interphase/quadrature component layer shifting in open loop multiple-input, multiple-output communications. Other embodiments may be described and/or claimed.
Abstract:
A device includes a transceiver to receive, from a base station, a physical downlink shared channel (PDSCH) transmission and processing circuitry to classify downlink (DL) subframe types for a set of DL subframes associated with a first uplink (UL) subframe for transmission of a hybrid automatic report request acknowledgment (HARQ-ACK) and perform physical uplink control channel (PUCCH) resources mapping based on the classified DL subframe Types for an acknowledgement transmission associated with PDSCH transmission reception.