Abstract:
The present invention is a method of forming micro through holes in printed wiring board substrate materials by means of chemical etching.In a typical printed wiring board substrate material consisting of a resinous dielectric base material, (which may or may not incorporate glass fibers), clad on both sides by a conductive layer, after the dielectric material in specific locations where through holes are to be formed is exposed by typical processes in which the conductor layer is selectively removed by etching, said exposed dielectric material is first softened, then removed by chemical etching involving several steps and procedures as well as a variety of chemical solutions, under vibratory agitation, forming through holes in said locations of 100 microns diameter or less.Employing the method of the present invention it is possible to determine the position, size and shape of the through hole required and also by means of plating to connect the conductive layers through the dielectric forming micro plated through holes in printed wiring boards.
Abstract:
The adhesion between surfaces of polyimide, particularly the through hole surfaces of polyimide-based multilayer laminates used in the fabrication of multilayer printed circuits, is improved by pretreatment of the surfaces with an essentially non-alkaline aqueous permanganate solution.
Abstract:
A strippable thin film of Cu is applied above the surface features of a microelectronic circuit package to protect the features during mechanical working, for example drilling, the panel. The thin film is then stripped off of the panel. The thin film may be stripped off of the panel either prior to or after circuitization.
Abstract:
A process is provided for metallizing the hole-wall surface of a through-hole provided in a printed circuit board precursor. In an initial step, the hole-wall surface is pre-treated with an oxidizing agent which micro-roughens it. An electro-conductive polymer film is then formed on the micro-roughened surface by oxidatively polymerizing in situ an acidic solution of an organic monomer with an oxidizing agent previously adsorbed on the board. The polymer film includes dopant anions which are acquired from the monomer solution. Finally, a metal layer is electroplated on the electro-conductive polymer film.
Abstract:
A process for manufacturing printed circuits provided with through holes, which comprises a cleaning pretreatment including a possible treatment by an organic solvent, a treatment in an alcaline solution of permanganate and a treatment for permanganate reduction, and a subsequent metallization treatment including a treatment for conditioning the walls of the through holes, a treatment for mordanting the copper surfaces, a precatalysis treatment, a catalysis treatment and a metallization treatment by a chemical copper both, wherein three treatments, namely reducing the permanganate, conditioning the walls of the through holes and mordanting the copper surfaces, are performed in a single step. The treatment for conditioning the walls of the through holes is performed by means of non-surfactant, water soluble polymers belonging to the group of the cationic polyelectrolytes. The composition for carrying out three treatments in a single step comprises an acid, hydrogen peroxide, a stabilizer for the hydrogen peroxide and a non-surfactant conditioner belonging to the group of the cationic polyelectrolytes.
Abstract:
The method of treating a surface of a substrate (12) comprises the steps of physically treating the surface by jetting hydrogen peroxide containing ice particles (28) onto the substrate surface, and chemically treating the substrate surface with hydrogen peroxide solution obtained by melting the hydrogen peroxide containing ice particles (28).
Abstract:
The permanganate process for treating plastics, e.g., printed circuit boards, to enhance the adhesion of metal plating to the plastic is improved by employing electrolysis to either maintain a certain permanganate level in the operating bath or to regenerate a spent or used bath.
Abstract:
A process for the formation of a plated through-hole printed circuit board comprising treating a circuit board base material as follows:1. condition with an oxidant solution;2(A). contact with a copper etchant that etches copper and neutralizes oxidant residues on the surface to be plated; and2(B). contact with a conditioner that conditions the board surface for enhanced catalyst adsorption; or2(A). contact with a neutralizer for oxidant residues that neutralizes said residues and conditions the board surface for enhanced catalyst adsorption; and2(B). contact with a copper etchant; and3. catalyze the board; and4. plate electroless metal onto catalyzed surfaces from a plating solution containing a source of halide ions in a concentration of at least 0.1 moles per liter of solution.The process is characterized by the absence of a step of acceleration and contains fewer processing steps than prior art processes.
Abstract:
An improved alkaline permanganate composition for etching printed circuit boards is provided by incorporating a secondary oxidant in the solution capable of oxidizing manganate ion to permanganate ion.
Abstract:
The present invention is directed to provide novel composite copper components. For example, provided is a composite copper component including a copper oxide-containing layer formed on at least a portion of the surface of a copper component, in which when the surface of the composite copper component is bonded to a resin substrate by thermocompression, and the copper component is peeled off from the resin substrate after the thermocompression bonding, metal contained in the copper oxide-containing layer is transferred to the resin substrate.