Abstract:
An optical device package having improved conductor efficiency, optical coupling and thermal transfer, as well as various methods for packaging a semiconductor die provide reduced connection length, and improved optical and thermal characteristics. In one package, a conductive circuit pattern disposed on a transparent or translucent cover connects bond pads on the light receiving surface of the semiconductor die to external electrical contacts. The construction of the package reduces connection length and eliminates the air gap between the glass and the die. In another package, a substrate having a protruding wall supports the glass and the substrate provides an electrical connection to terminals for connection to an external device. In another package, the glass is supported by a die mounting board that supports the semiconductor die and includes leads for connection to an external device. In other packages, the glass is supported directly by the semiconductor die and the die is supported by an encapsulated assembly including leads that support the semiconductor die.
Abstract:
A semiconductor package and its fabricating method are proposed, in which a plurality of passive devices are integrated under a semiconductor chip, so as to increase the layout number of the passive devices in the semiconductor package and enhance the flexibility of substrate routability, as well as reduce an occupied area of a substrate for miniaturize the semiconductor package in profile. Moreover, as the integrated passive devices are further encapsulated by using an insulative material prior to a molding process, the dislocation of the passive devices caused by a high temperature and mold flow of a molding resin can be prevented from occurrence during molding. Furthermore, the encapsulated passive devices are prevented from contacting bonding wires, allowing the occurrence of short circuit to be avoided and quality of the packaged product to be assured.
Abstract:
An apparatus for testing a semiconductor die and the method wherein there is provided a package having a cavity therein with a plurality of terminals in the package disposed at the periphery of the cavity. A semiconductor die to be tested and having a plurality of bond pads thereon is disposed in the cavity and an interconnecting layer having electrically conductive paths thereon is also disposed in the cavity, each of the paths having first and second spaced apart regions thereon, the first region of each path being aligned with and contacting a bond pad. An interconnection is provided between the second spaced apart region of each of the paths and one of the plurality of terminals. The second spaced apart region of each of the paths is preferably a bump aligned with and contacting one of the plurality of terminals. A compliant layer is preferably disposed over the interconnecting layer and provides a force causing engagement of at least the first spaced apart regions and the bond pads. The first region is preferably a compliant bump probe tip having a first predetermined height above the layer and includes a standoff on the layer having a second predetermined height above the layer less than the first height.
Abstract:
A module (1) for contactless communication includes a plurality of electrical components (4, 5, 6, 7, 8) which each have at least two contact faces (9, 10, 11, 12, 13, 14, 15, 16) for the electrical connection. The electrical components (4, 5, 6, 7, 8) of the module are mounted both on a component side (MB) and an on adhesive side (MK) of a lead frame (M) formed by metal strips (MS). During the manufacture of the module (1) the metal strips (MS) of the lead frame (M) are held in one plane (E) and in position by means of an adhesive tape (K). The adhesive tape (K) has openings (A1, A2, A3, A4, A5, A6) at given positions of the lead frame (M) so as to enable electrical components to be mounted on the adhesive side (MK) of the lead frame (M).
Abstract:
A semiconductor device includes a heat sink adjacent to a die. A dam is positioned at the peripheral edges of the heat sink. During a transfer molding process, the dam serves two purposes. First, the dam prevents damage to the mold. Second, the dam prevents encapsulant packaging compound material from flowing onto the heat sink. The dam may be a gasket. The dam may also be a burr created by, for example, stamping the bottom of the heat sink. The dam may include copper, polyamides, and leadlock tape. The dam may be permanently connected to the heat sink for removal following packaging. The dam may be removed mechanically, through the use of heat, or during an electrolytic deflash cycle.
Abstract:
Provided is a semiconductor memory module including semiconductor devices using solder balls as outer connection terminals, which reduces the deterioration of solder joint reliability (SJR) due to the difference in the thermal expansion coefficients of the module components. The memory module includes a module board, an upper heat sink, a lower heat sink and a linking means. The linking means is formed to have a structure that makes it possible to absorb contraction and expansion within the semiconductor module due to the different thermal expansion coefficients of the upper heat sink, the lower heat sink and the module board.
Abstract:
A plurality of semiconductor devices can be mounted on a mounting board in a three-dimensional structure by stacking one on another with a simple structure. A semiconductor element is mounted on a first surface of an interposer. Electrode pads connected to the semiconductor element are arranged around the semiconductor element on the first surface of the interposer. Protruding electrodes are provided on the respective electrode pads. Through holes are formed in the interposer so as to extend from a second surface opposite to the first surface of the redistribution substrate to the respective electrode pads. The semiconductor element is encapsulated by a seal resin. Each of the protruding electrodes is higher than the sealed portion of the semiconductor element.
Abstract:
Devices and methods for reducing lead inductance in integrated circuit (IC) packages. More specifically to an integrated circuit package configuration for high speed applications where the inductance of the leads is reduced or minimized in high capacity semiconductor device packages. The integrated circuit package assembly comprises a substrate, semiconductor device, insulating covering or coating, if desired, a semiconductor device retainer, lead frame, and wire bond interconnections.
Abstract:
Leads are connected between first and second elements so that a first end of each lead is connected to the first element and a second end of each lead is connected to the second element. and the elements are moved away from one another so as to bend the leads towards a vertically-extensive disposition. The direction of each lead, prior to the movement step, is represented by a lead direction vector from the first end of the lead to the second end of the same lead. At least some of these lead direction vectors are non-parallel with at least some other lead direction vectors, but the various lead direction vectors have components in a common direction. During the vertical movement step, the first element is moved in a horizontal direction of motion in this common direction, thereby moving the first end of each lead horizontally toward the second end of that lead, so as to provide or maintain slack in the leads.
Abstract:
It is an object to provide a power semiconductor device having a circuit pattern and a lower pattern made of an Al alloy for cost reduction and enabling reduction in heat resistance and improvement in resistance of a soldering layer to heat cycle. A substrate of semiconductor elements is mounted on a metal base plate made of a Cu alloy. The substrate of semiconductor elements includes an insulating substrate made of ceramics or the like. The circuit pattern and the lower pattern both made of an Al alloy are formed on an upper surface and a lower surface of the insulating substrate. The lower pattern is provided on an entire surface of the insulating substrate and joined onto the metal base plate through the soldering layer. Thicknesses of the metal base plate and the insulating substrate are respectively set to be 3.5 to 5.5 mm and 0.5 to 1 mm, for example. A thickness of the circuit pattern is set to be 0.4 to 0.6 mm and thicknesses of the lower pattern and the soldering layer are respectively set to be 0.2 mm or less and 100 to 300 nullm.