摘要:
Systems, devices and methods are provided to improve performance of integrated circuits by providing a low-k insulator. One aspect is an integrated circuit insulator structure that includes a vapor-deposited dielectric material. The dielectric material has a predetermined microstructure formed using a glancing angle deposition (GLAD) process. The microstructure includes columnar structures that provide a porous dielectric material. One aspect is a method of forming a low-k insulator structure. In one embodiment, a predetermined vapor flux incidence angle null is set with respect to a normal vector for a substrate surface so as to promote a dielectric microstructure with individual columnar structures. Vapor deposition and substrate motion are coordinated so as to form columnar structures in a predetermined shape. Other aspects are provided herein.
摘要:
Hexachlorodisilane (Si2Cl6) is used as a Si raw material for forming a silicon nitride film that can be widely different in the etching rate from a silicon oxide film. The silicon nitride film is formed by an LPCVD method.
摘要:
A method of reducing or substantially eliminating the number of tungsten plug pullouts and consequential chip failures by controlling the CMP step of removing the overfilled tungsten so as to leave a thin layer of tungsten instead of continuing the removal down to the top surface of the dielectric layer.
摘要:
The present invention relates to a method for fabricating a gate electrode of a semiconductor device with a double hard mask capable of preventing an abnormal oxidation of a metal layer included in the gate electrode and suppressing stress generation. The method includes the steps of: forming a gate insulation layer on a substrate; forming a gate layer structure containing at least a metal layer on the gate insulation layer; forming a hard mask oxide layer on the gate layer structure at a temperature lower than an oxidation temperature of the metal layer; forming a hard mask nitride layer on the hard mask oxide layer; patterning the hard mask oxide layer and the hard mask nitride layer as a double hard mask for forming the gate electrode; and forming the gate electrode by etching the gate layer structure with use of the double hard mask as an etch mask.
摘要:
Disclosed is a method of manufacturing a high-k gate dielectric, characterized in that an annealing process in a forming gas atmosphere, corresponding to a final step of a manufacturing process of a semiconductor device based on MOSFET fabrication techniques, is applied for a high-k gate dielectric-containing semiconductor device, under high pressure, instead of conventional atmospheric pressure, whereby passivation effects of interface charges and fixed charges of the semiconductor device can be maximized even at relatively low temperatures.
摘要:
A preliminary metal layer having a first thickness is formed on a substrate. A surface of the preliminary metal layer having uneven portions is etched to remove the uneven portions and to form a metal layer having an improved surface morphology. Therefore, shorts caused by the surface morphology of a metal layer occur less frequently and the semiconductor fabricating yield improves.
摘要:
A method of manufacturing a MOSFET type semiconductor device includes planarizing a gate material layer that is deposited over a channel. The planarization is performed in a multi-step process that includes an initial nullroughnull planarization and then a nullfinenull planarization. The slurry used for the finer planarization may include added material that tends to adhere to low areas of the gate material.
摘要:
A damascene-formed conductive region having a recess formed at the top surface thereof by a chemical-mechanical polish (CMP) process is repaired or regrown using a displacement method. A displacement material is deposited over the recessed conductive material. The displacement material is removed from a top surface of the insulating layer surrounding the damascene conductive region, and the semiconductor device is placed in a solution. The displacement material reacts with the solution, and copper in the solution is grown as a result of the displacement over the recess of the conductive region. The displacement method results in reducing or eliminating the recess formed by the CMP process.
摘要:
A Local interconnection wiring structure method for forming the same reduces the likelihood of a short between a local interconnection layer of gate electrodes and an active region by forming a common aperture so as to have a determined aperture between the local interconnection layer and the active region on an insulation film of a semiconductor substrate. Methods of forming the local interconnection wire can include forming a first etching mask pattern that has a size longer than a length between inner ends of adjacent gate electrodes formed on a semiconductor substrate and covered with an insulation film. The etching mask simultaneously has a length the same as or shorter than the length between outer ends of the gate electrodes. The insulation film exposed in the first etching mask pattern is subsequently etched so that the insulation film remains higher than a highest height of the gate electrodes, so as to form a recess pattern. The first etching mask pattern is then removed and a second etching mask pattern is formed so as to partially expose the insulation film provided within the recess pattern. The insulation film within the recess pattern is etched to form apertures for exposing a partial surface of the gate electrodes. The second etching mask pattern is then removed. The recess pattern and the apertures are then filled with conductive material to form a local interconnection layer for connecting between the gate electrodes.
摘要:
A TaN film and a Cu film are deposited successively over an insulating film formed with trenches. Then, a first CMP process is performed by using a slurry having a polishing rate for Cu sufficiently higher than a polishing rate for TaN and containing an agent for forming a protective film for Cu in a sufficient amount. As a result, the upper surface of the portion of the Cu film located in each of the trenches is positioned flush with the upper surface of TaN. Then, a second CMP process is performed under such a condition that the polishing rate for Cu is equal to or higher than the polishing rate for TaN, thereby forming Cu wires. By properly changing conditions for the second CMP process in accordance with the level of the upper surface of the Cu film, the upper surface of the Cu film is positioned flush with or lower in level than the upper surface of the insulating film after the second CMP process so that the occurrence of defective wiring is reduced.