Abstract:
A semiconductor structure and its method for fabrication include a first surface semiconductor layer of a first crystallographic orientation located upon a dielectric surface of a substrate. Located laterally separated upon the dielectric surface from the first surface semiconductor layer is a stack layer. The stack layer includes a buried semiconductor layer located nearer the dielectric surface and a second surface semiconductor layer of a second crystallographic orientation different from the first crystallographic orientation located over and not contacting the buried semiconductor layer. The semiconductor structure provides a pair of semiconductor surface regions of different crystallographic orientation. A particular embodiment may be fabricated utilizing a sequential laminating, patterning, selective stripping and selective epitaxial deposition method.
Abstract:
A semiconductor fin memory structure and a method for fabricating the semiconductor fin memory structure include a semiconductor fin-channel within a finFET structure that is contiguous with and thinner than a conductor fin-capacitor node within a fin-capacitor structure that is integrated with the finFET structure. A single semiconductor layer may be appropriately processed to provide the semiconductor fin-channel within the finFET structure that is contiguous with and thinner than the conductor fin-capacitor node within the fin-capacitor structure.
Abstract:
Methods for forming fully silicided gates over fins of FinFet devices are disclosed. The disclosure provides methods for patterning a gate stack over each fin from a polysilicon layer and a polysilicon germanium layer, and then removing the polysilicon germanium layer over one of the fins. The disclosure further includes forming a metal layer over both fins and annealing the FinFet device to form fully silicided gates over each fin of the FinFet device.
Abstract:
A source trench and a drain trench are asymmetrically formed in a top semiconductor layer comprising a first semiconductor in a semiconductor substrate. A second semiconductor material having a narrower band gap than the first semiconductor material is deposited in the source trench and the drain trench to form a source side narrow band gap region and a drain side narrow band gap region, respectively. A gate spacer is formed and source and drain regions are formed in the top semiconductor layer. A portion of the boundary between an extended source region and an extended body region is formed in the source side narrow band gap region. Due to the narrower band gap of the second semiconductor material compared to the band gap of the first semiconductor material, charge formed in the extended body region is discharged through the source and floating body effects are reduced or eliminated.
Abstract:
A structure and method for making includes adjacent pMOSFET and nMOSFET devices in which the gate stacks are each overlain by a stressing layer that provides compressive stress in the channel of the pMOSFET device and tensile stress in the channel of the nMOSFET device. One of the pMOSFET or nMOSFET device has a height shorter than that of the other adjacent device, and the shorter of the two devices is delineated by a discontinuity or opening in the stressing layer overlying the shorter device. In a preferred method for forming the devices a single stressing layer is formed over gate stacks having different heights to form a first type stress in the substrate under the gate stacks, and forming an opening in the stressing layer at a distance from the shorter gate stack so that a second type stress is formed under the shorter gate stack. In an exemplary embodiment, the opening may be extended into an underlying layer such as a source/drain region of the shorter gate stack and a bottom thereof silicided such that a contact formed therein exhibits reduced contact resistance.
Abstract:
A digital inverter formed by three carbon nanotubes (CNTs) extending vertically from a substrate, one CNT functioning as first source (S1) and having a first logic signal applied to it, another CNT functioning as second source (S2) and having a second logic signal applied to it, a third CNT functioning as gate (G), and disposed between the two sources (S1, S2). A drain (D) contact is associated with the gate (G). A logic signal applied to the gate (G) causes one or the other of the sources (S1, S2) to deflect, contacting the drain (D) and transferring its logic signal thereto—such as logic “0” on the gate resulting in logic “1” (from one of the sources) being transferred to the drain (D), and logic “1” on the gate resulting in logic “0” (from the other of the sources) being transferred to the drain (D).
Abstract:
The present invention, in one embodiment, provides a memory device including a substrate including at least one device region; a first field effect transistor having a first threshold voltage and a second field effect transistor having a second threshold voltage, the second field effect transistor including a second active region present in the at least one device region of the substrate, the second active region including a second drain and a second source separated by a second channel region, wherein the second channel region includes a second trap that stores holes produced when the first field effect transistor is in the on state, wherein the holes stored in the second trap increase the second threshold voltage to be greater than the first threshold voltage.
Abstract:
A CMOS structure includes a v-shape surface in an nMOSFET region. The v-shape surface has an orientation in a (100) plane and extends into a Si layer in the nMOSFET region. The nMOSFET gate dielectric layer is a high-k material, such as Hf02. The nMOSFET has a metal gate layer, such as Ta. Poly-Si is deposited on top of the metal gate layer.
Abstract:
The present invention provides a memory device including at least two of a first dielectric on a semiconductor substrate; a floating gates corresponding to each of the at least two gate oxides; a second dielectric on the floating gates; a control gate conductor formed atop the second gate oxide; source and drain regions present in portions of the semiconducting substrate that are adjacent to each portion of the semiconducting substrate that is underlying the at least two of the first gate oxide, wherein the source and drain regions define a length of a channel positioned therebetween; and a low-k dielectric material that is at least present between adjacent floating gates of the floating gates corresponding to each of the at least two gate oxides, wherein the low-k dielectric material is present along a direction perpendicular to the length of the channel positioned therebetween.
Abstract:
There is provided a method of manufacturing a field effect transistor (FET) that includes the steps of forming a gate structure on a semiconductor substrate, and forming a recess in the substrate and embedding a second semiconductor material in the recess. The gate structure includes a gate dielectric layer, conductive layers and an insulating layer. Forming said gate structure includes a step of recessing the conductive layer in the gate structure, and the steps of recessing the conductive layer and forming the recess in the substrate are performed in a single step. There is also provided a FET device.