Abstract:
Examples described herein generally relate to communication between integrated circuit (IC) dies in a wafer-level fan-out package. In an example, an electronic device includes a wafer-level fan-out package. The wafer-level fan-out package includes a first integrated circuit (IC) die, a second IC die, and a redistribution structure. The first IC die includes a transmitter circuit. The second IC die includes a receiver circuit. The redistribution structure includes physical channels electrically connected to and between the transmitter circuit and the receiver circuit. The transmitter circuit is configured to transmit multiple single-ended data signals and a differential clock signal through the physical channels to the receiver circuit. The receiver circuit is configured to capture data from the multiple single-ended data signals using a first single-ended clock signal based on the differential clock signal.
Abstract:
A quadrature clock generator is disclosed. The quadrature clock generator may include a first injection-locked oscillator, a phase interpolator, and a second injection-locked oscillator. The first injection-locked oscillator may generate a first plurality clock signals from a first reference clock signal. The phase interpolator may generate a second reference clock signal from the first plurality of clock signals, and the second injection-locked oscillator may generate a second plurality of clock signals from the second reference clock signal. A first quadrature clock signal may be selected from the first plurality of clock signals and a second quadrature clock signal may be selected from the second plurality of reference clock signals.
Abstract:
A phase locked loop (PLL) circuit includes a voltage controlled oscillator (VCO), a first loop circuit, and a second loop circuit. The first loop circuit includes a first loop filter configured to receive a first signal based on a feedback signal from the VCO and provide a first VCO frequency control signal to the VCO. The second loop circuit includes a compensation circuit configured to receive a reference signal and the first signal, and provide a second VCO frequency control signal to the VCO.
Abstract:
An example apparatus includes an input circuit including a first adder and a first multiplier, the first adder configured to level-shift an input signal by an amount and the first multiplier configured to multiply output of the adder by a factor. The apparatus further includes a multi-stage noise shaping (MASH) circuit having an input coupled to the first multiplier. The apparatus further includes an output circuit including a second multiplier and a second adder, the second multiplier configured to multiply output of the MASH circuit by a reciprocal of the factor and the second adder configured to level-shift output of the second multiplier by an inverse of the amount.
Abstract:
An example automatic gain control (AGC) circuit includes a base current-gain circuit having a programmable source degeneration resistance responsive to first bits of an AGC code word. The AGC circuit further includes a programmable current-gain circuit, coupled between an input and an output of the base current-gain circuit, having a programmable current source responsive to second bits of the AGC code word. The AGC circuit further includes a bleeder circuit, coupled to the output of the base current-gain circuit, having a programmable current source responsive to logical complements of the second bits of the AGC code word. The AGC circuit further includes a load circuit coupled to the output of the base current-gain circuit.
Abstract:
An example a phase-locked loop (PLL) circuit includes a sampling phase detector configured to receive a reference clock and a feedback clock and configured to supply a first control current and a pulse signal. The PLL further includes a charge pump configured to generate a second control current based on the first control current and the pulse signal. The PLL further includes a loop filter configured to filter the second control current and generate an oscillator control voltage. The PLL further includes a voltage controlled oscillator (VCO) configured to generate an output clock based on the oscillator control voltage. The PLL further includes a frequency divider configured to generate the reference clock from the output clock.
Abstract:
An example phase-locked loop (PLL) circuit includes a voltage controlled oscillator (VCO) configured to generate an output clock based on an oscillator control voltage, a sub-sampling phase detector configured to receive a reference clock and the output clock, and a phase frequency detector configured to receive the reference clock and a feedback clock. The PLL circuit includes a charge pump configured to generate a charge pump current, a multiplexer circuit configured to select either output of the sub-sampling phase detector or output of the phase frequency detector to control the charge pump, and a lock detector configured to receive the reference clock, the feedback clock, and the output of the phase frequency detector to control the multiplexer. The PLL circuit includes a loop filter configured to filter the charge pump current and generate the oscillator control voltage, and a frequency divider configured to generate the reference clock from the output clock.
Abstract:
A common mode logic buffer device includes a current source configured to provide a source current. An input stage includes a first MOS transistor pair configured to generate, from the source current and based upon an input differential voltage, a differential current between two output paths. An output stage includes a second MOS transistor pair configured to generate an output differential voltage based upon an effective impedance provided for the each of the two output paths. An adjustment circuit is configured to adjust, in response to a control signal, the effective impedance of the second MOS transistor pair.
Abstract:
A method for plesiochronous clock generation for parallel wireline transceivers, includes: inputting, into at least one decoder, at least one digital frequency mismatch number; decoding, with the at least one decoder, the at least one digital frequency mismatch number to obtain at least one digital frequency divider number that represents a transmit frequency associated with at least one signal; inputting the at least one digital frequency divider number into at least one fractional-N phase lock loop; and utilizing, by the at least one fractional-N phase lock loop, the at least one digital frequency divider number and an analog reference signal produced by a reference oscillator to produce a resultant signal at the transmit frequency; wherein the at least one decoder and the at least one fractional-N phase lock loop are contained on a single integrated circuit.
Abstract:
A method for plesiochronous clock generation for parallel wireline transceivers, includes: inputting, into at least one decoder, at least one digital frequency mismatch number; decoding, with the at least one decoder, the at least one digital frequency mismatch number to obtain at least one digital frequency divider number that represents a transmit frequency associated with at least one signal; inputting the at least one digital frequency divider number into at least one fractional-N phase lock loop; and utilizing, by the at least one fractional-N phase lock loop, the at least one digital frequency divider number and an analog reference signal produced by a reference oscillator to produce a resultant signal at the transmit frequency; wherein the at least one decoder and the at least one fractional-N phase lock loop are contained on a single integrated circuit.