Abstract:
A storage device including: a bridge board to receive a first command; an authenticator to receive user information; and a memory device to receive the first command from the bridge board, the memory device includes a memory controller which determines a status of the memory device, provides status information including the determined status of the memory device to the bridge board, determines the status of the memory device as an unlocked status or a locked status, the bridge board includes a transceiver which communicates with the host through an interface, a register which stores interface information, and a bridge board controller which generates a first response to the first command in a format corresponding to the interface using the interface information, and provides the first response to a host, the first response includes a status bit which inhibits or allows a write operation with respect to the memory device.
Abstract:
A method of programming a non-volatile memory device including a first memory block and a second memory block includes: performing a first program operation on a first memory cell in the first memory block and connected to a first word line of a first level with respect to a substrate; after the performing of the first program operation on the first memory cell, performing the first program operation on a second memory cell in the second memory block and connected to a second word line of the first level; and after the performing of the first program operation on the second memory cell, performing a second program operation on the first memory cell.
Abstract:
A memory device includes multiple word lines. A method of operating the memory device includes: performing a first dummy read operation, with respect to first memory cells connected to a first word line among the word lines, by applying a dummy read voltage, having an offset level of a first level, to the first word line; determining, based on a result of the performing of the first dummy read operation, degradation of a threshold voltage distribution of the first memory cells; adjusting an offset level of the dummy read voltage as a second level, based on a result of the determining of the threshold voltage distribution; and performing a second dummy read operation with respect to second memory cells connected to a second word line among the word lines, by applying a dummy read voltage, having the offset level adjusted as the second level, to the second word line among the word lines.
Abstract:
Embodiments provide a magnetic memory device and a method of writing a magnetic memory device. The magnetic memory device includes a magnetic tunnel junction including a reference layer, a free layer and a tunnel barrier layer between the reference and free layers, and a first conductive line adjacent to the free layer. A first spin-orbit current having a frequency decreasing with time flows through the first conductive line. The writing method includes applying the first spin-orbit current having the frequency decreasing with time to the first conductive line.
Abstract:
A semiconductor device including: a first gate pattern disposed in a peripheral region of a substrate; a second gate pattern disposed in a cell region of the substrate; a first insulator formed on sidewalls of the first gate pattern; and a second insulator formed on sidewalls of the second gate pattern, wherein a dielectric constant of the first insulator is different from a dielectric constant of the second insulator, and wherein a height of the second insulator is greater than a height of the second gate pattern.
Abstract:
Provided is a light emitting element, a light emitting device including the same, and fabrication methods of the light emitting element and light emitting device. The light emitting device comprises a substrate, a light emitting structure including a first conductive layer of a first conductivity type, a light emitting layer, and a second conductive layer of a second conductivity type which are sequentially stacked, a first electrode which is electrically connected with the first conductive layer; and a second electrode which is electrically connected with the second conductive layer and separated apart from the first electrode, wherein at least a part of the second electrode is connected from a top of the light emitting structure, through a sidewall of the light emitting structure, and to a sidewall of the substrate.
Abstract:
A storage device is provided. The storage device includes a boot ROM stores a plurality of public keys and a boot ROM image, an OTP memory identifies a first public key among the plurality of public keys, a first memory including a first area the stores the plurality of public keys and a flash boot image different from the boot ROM image, and a second area that stores a first boot signature corresponding to the flash boot image, a second memory including a first firmware image including a first firmware signature, and a memory controller that receives a second firmware image including a second firmware signature and a second boot signature, receives a second public key among the plurality of public keys and the flash boot image based on the second firmware image being received, and write the second boot signature in the second area of the first memory.
Abstract:
A storage device includes a nonvolatile memory device, and a controller that manages a data encryption key (DEK). The DEK is used to encrypt data to be written in a storage space of the nonvolatile memory device by a first user and to decrypt data read from the storage space. The controller grants a second user authority to access the storage space by encrypting the DEK based on a Diffie-Hellman (DH) algorithm, grants a second user authority to access the encrypted DEK, and decrypts the encrypted DEK based on the DH algorithm.
Abstract:
Embodiments provide a magnetic memory device and a method of writing a magnetic memory device. The magnetic memory device includes a magnetic tunnel junction including a reference layer, a free layer and a tunnel barrier layer between the reference and free layers, and a first conductive line adjacent to the free layer. A first spin-orbit current having a frequency decreasing with time flows through the first conductive line. The writing method includes applying the first spin-orbit current having the frequency decreasing with time to the first conductive line.
Abstract:
A method of programming a non-volatile memory device including a first memory block and a second memory block includes: performing a first program operation on a first memory cell in the first memory block and connected to a first word line of a first level with respect to a substrate; after the performing of the first program operation on the first memory cell, performing the first program operation on a second memory cell in the second memory block and connected to a second word line of the first level; and after the performing off the first program operation on the second memory cell, performing a second program operation on the first memory cell.