Abstract:
Millimeter wave (mmWave) technology, apparatuses, and methods that relate to transceivers, receivers, and antenna structures for wireless communications are described. The various aspects include co-located millimeter wave (mmWave) and near-field communication (NFC) antennas, scalable phased array radio transceiver architecture (SPARTA), phased array distributed communication system with MIMO support and phase noise synchronization over a single coax cable, communicating RF signals over cable (RFoC) in a distributed phased array communication system, clock noise leakage reduction, IF-to-RF companion chip for backwards and forwards compatibility and modularity, on-package matching networks, 5G scalable receiver (Rx) architecture, among others.
Abstract:
An apparatus and method for analog-to-digital conversion. The apparatus includes a first analog-to-digital converter (ADC), a second ADC, and a calibration unit. The first ADC is configured to sample an input analog signal at a first sampling frequency. The second ADC is configured to sample the input analog signal at a second sampling frequency. The second sampling frequency is a fraction of the first sampling frequency. The calibration unit is configured to correct a distortion incurred in an output of the first ADC based on an output of the second ADC. The first ADC may be a time-interleaved ADC. The second ADC may be an extra sub-ADC of the time-interleaved ADC. The second ADC may be configured to sample the input analog signal at random sampling phases. A dithering noise may be added to the input analog signal of the second ADC. The calibration unit may be a non-linear equalizer.
Abstract:
A signal processing circuit arrangement may include a preamplifier circuit configured to map a first dimension input and a second dimension input to a first subset of a plurality of lookup table coefficients of a two-dimensional (2D) lookup table, wherein the first dimension input and the second dimension input each represent a signal level of one or more input signals, extrapolate from the first subset of the plurality of lookup table coefficients to generate a lookup table output, and apply the lookup table output to the one or more input signals to generate a predistorted input signal for an amplifier.
Abstract:
A digital processor is provided having an instruction set with a complex exponential function. The digital processor evaluates a complex exponential function for an input value, x, by obtaining a complex exponential software instruction having the input value, x, as an input; and in response to the complex exponential software instruction: invoking at least one complex exponential functional unit that implements complex exponential software instructions to apply the complex exponential function to the input value, x; and generating an output corresponding to the complex exponential of the input value, x. A complex exponential function for an input value, x, can be evaluated by wrapping the input value to maintain a given range; computing a coarse approximation angle using a look-up table; scaling the coarse approximation angle to obtain an angle from 0 to θ; and computing a fine corrective value using a polynomial approximation.
Abstract:
A system and method for equalization of a linear or non-linear system. The system includes an adder configured to add an analog reference signal and an input signal, a processing system configured to process a sum of the analog reference signal and the input signal, a non-linear equalizer (NLEQ) configured to process an output of the processing system to remove a distortion incurred by the processing system, a calibration circuitry configured to generate a reconstructed reference signal in digital domain based on measurement of the analog reference signal, and generate coefficients for the NLEQ based on the reconstructed reference signal and the output of the processing system, and a subtractor configured to subtract the reconstructed reference signal from an output of the NLEQ. The analog reference signal may be a sinusoid including single or multiple tones of sinusoids. The non-linear system may be an analog-to-digital converter (ADC).
Abstract:
Millimeter wave (mmWave) technology, apparatuses, and methods that relate to transceivers, receivers, and antenna structures for wireless communications are described. The various aspects include co-located millimeter wave (mmWave) and near-field communication (NFC) antennas, scalable phased array radio transceiver architecture (SPARTA), phased array distributed communication system with MIMO support and phase noise synchronization over a single coax cable, communicating RF signals over cable (RFoC) in a distributed phased array communication system, clock noise leakage reduction, IF-to-RF companion chip for backwards and forwards compatibility and modularity, on-package matching networks, 5G scalable receiver (Rx) architecture, among others.
Abstract:
A semiconductor chip providing on-chip self-testing of an Analog-to-Digital Converter, ADC, implemented in the semiconductor chip is provided. The semiconductor chip comprises the ADC and a Digital-to-Analog Converter, DAC, configured to generate and supply a radio frequency test signal to the ADC via a supply path. The ADC is configured to generate digital output data based on the radio frequency test signal. The semiconductor chip further comprises a reference data generation circuit configured to generate digital reference data. Additionally, the semiconductor chip comprises a comparator circuit configured to compare the digital output data to the digital reference in order to determine error data.
Abstract:
Techniques are disclosed for the use of Crest Factor Reduction (CFR) algorithm that performs oversampling of an input signal and a cancellation pulse, and detects a set of peak samples in the upsampled input signal that exceed a predetermined threshold value. The peak samples are clustered such that a subset of the oversampled signal peaks are used to compute gain factors for the generation of a scaled truncated upsampled cancellation pulse. Several scaled truncated upsampled cancellation pulses are applied in parallel to perform peak cancellation of the highest peak in each cluster as part of an initial peak cancellation process. Any remaining peaks are canceled by iterative gain factors computation process. A final cancellation pulse is then generated by multiplying a cancellation pulse by the computed gain factors.
Abstract:
Millimeter wave (mmWave) technology, apparatuses, and methods that relate to transceivers, receivers, and antenna structures for wireless communications are described. The various aspects include co-located millimeter wave (mmWave) and near-field communication (NFC) antennas, scalable phased array radio transceiver architecture (SPARTA), phased array distributed communication system with MIMO support and phase noise synchronization over a single coax cable, communicating RF signals over cable (RFoC) in a distributed phased array communication system, clock noise leakage reduction, IF-to-RF companion chip for backwards and forwards compatibility and modularity, on-package matching networks, 5G scalable receiver (Rx) architecture, among others.
Abstract:
An apparatus for calibrating a time-interleaved analog-to-digital converter including a plurality of time-interleaved analog-to-digital converter circuits is provided. The apparatus includes a clock generation circuit configured to generate a plurality of phase shifted clock signals for the plurality of time-interleaved analog-to-digital converter circuits and a reference clock signal. Further, the apparatus includes a reference signal generation circuit configured to generate a reference signal based on the reference clock signal. The reference signal is a square wave signal. The apparatus additionally includes a coupling circuit configured to controllably couple an input node of the time-interleaved analog-to-digital converter to either the reference signal generation circuit or to a signal node capable of providing an analog signal for digitization.