Abstract:
An embodiment of a semiconductor device includes a semiconductor substrate that includes a host substrate and an upper surface, an active area, a substrate opening in the semiconductor substrate that is partially defined by a recessed surface, and a thermally conductive layer disposed over the semiconductor substrate that extends between the recessed surface and a portion of the semiconductor substrate within the active area. A method for fabricating the semiconductor device includes defining an active area, forming a gate electrode over a channel in the active area, forming a source electrode and a drain electrode in the active area on opposite sides of the gate electrode, etching a substrate opening in the semiconductor substrate that is partially defined by the recessed surface, and depositing a thermally conductive layer over the semiconductor substrate that extends between the recessed surface and a portion of the semiconductor substrate over the channel.
Abstract:
An embodiment of a method of attaching a semiconductor die to a substrate includes placing a bottom surface of the die over a top surface of the substrate with an intervening die attach material. The method further includes contacting a top surface of the semiconductor die and the top surface of the substrate with a conformal structure that includes a non-solid, pressure transmissive material, and applying a pressure to the conformal structure. The pressure is transmitted by the non-solid, pressure transmissive material to the top surface of the semiconductor die. The method further includes, while applying the pressure, exposing the assembly to a temperature that is sufficient to cause the die attach material to sinter. Before placing the die over the substrate, conductive mechanical lock features may be formed on the top surface of the substrate, and/or on the bottom surface of the semiconductor die.
Abstract:
An embodiment of a packaged radio frequency (RF) device includes a device substrate with a voltage reference plane, a first input lead coupled to the device substrate, a first output lead coupled to the device substrate, a first transistor die coupled to a top surface of the device substrate with a solder bond, a second die coupled to the top surface of the device substrate with a conductive epoxy that electrically couples at least one component of the second die to the voltage reference plane, and non-conductive molding compound over the top surface of the device substrate and encompassing the first transistor die, the second die, a portion of the first input lead, and a portion of the first output lead.
Abstract:
An embodiment of a semiconductor device includes a semiconductor substrate that includes a host substrate and an upper surface, an active area, a substrate opening in the semiconductor substrate that is partially defined by a recessed surface, and a thermally conductive layer disposed over the semiconductor substrate that extends between the recessed surface and a portion of the semiconductor substrate within the active area. A method for fabricating the semiconductor device includes defining an active area, forming a gate electrode over a channel in the active area, forming a source electrode and a drain electrode in the active area on opposite sides of the gate electrode, etching a substrate opening in the semiconductor substrate that is partially defined by the recessed surface, and depositing a thermally conductive layer over the semiconductor substrate that extends between the recessed surface and a portion of the semiconductor substrate over the channel.