一种Ka波段MMIC低噪声放大器

    公开(公告)号:CN107612514B

    公开(公告)日:2024-01-02

    申请号:CN201711034833.X

    申请日:2017-10-30

    Abstract: 本发明涉及一种Ka波段MMIC低噪声放大器,主要解决现有技术中的噪声系数高、带内增益平坦度差、线性度差的技术问题。通过采用包括两级放大器、λ/4传输线结构以及三级匹配网络,该两级放大器包括第一级场效应晶体管放大器,第一级栅极偏置网络,第一级漏极偏置网络以及第一级源极的电阻、第一级源极的电容并联网络,第二级放大器,第二级栅极偏置网络,第二级漏极偏置网络以及第二级源极的电阻、电容并联网络;该λ/4传输线结构包括与第一级栅极偏置网络连接的第一传输线网,以及与第一级漏极偏置网络连接的第二传输线网的技术方案,较好的解决了该问题,能够用于Ka波段的通信领域。

    一种无铅BaTiO3铁电存储器及其制备方法

    公开(公告)号:CN117615579A

    公开(公告)日:2024-02-27

    申请号:CN202311429465.4

    申请日:2023-10-31

    Abstract: 本发明涉及微电子存储器技术领域,具体涉及一种无铅BaTiO3铁电存储器及其制备方法,包括使用丙酮、无水乙醇和去离子水依次对SrTiO3衬底超声清洗后吹干;将吹干后的SrTiO3衬底放入预设温度的脉冲激光沉积系统腔室,并通入氧气,使用La0.65Sr0.35MnO3缓冲层制备得到薄膜;对所述薄膜进行原位退火后降温取出;遮住部分所述薄膜,再次送入脉冲激光沉积系统腔室,使用1.1%wt Nb:SrTiO3制备得到底电极层;对所述底电极层通入氧气使用BaTiO3制备得到BaTiO3铁电功能氧化物层;对所述BaTiO3铁电功能氧化物层进行原位退火后降温取出;将取出的BaTiO3铁电功能氧化物层使用lift‑off工艺以及射频磁控溅射生长Pt上电极层,得到无铅BaTiO3铁电存储器,解决了现有的闪存的浮栅电容数据的读取具有破坏性的问题。

    一种Ka波段MMIC低噪声放大器

    公开(公告)号:CN107612514A

    公开(公告)日:2018-01-19

    申请号:CN201711034833.X

    申请日:2017-10-30

    Abstract: 本发明涉及一种Ka波段MMIC低噪声放大器,主要解决现有技术中的噪声系数高、带内增益平坦度差、线性度差的技术问题。通过采用包括两级放大器、λ/4传输线结构以及三级匹配网络,该两级放大器包括第一级场效应晶体管放大器,第一级栅极偏置网络,第一级漏极偏置网络以及第一级源极的电阻、第一级源极的电容并联网络,第二级放大器,第二级栅极偏置网络,第二级漏极偏置网络以及第二级源极的电阻、电容并联网络;该λ/4传输线结构包括与第一级栅极偏置网络连接的第一传输线网,以及与第一级漏极偏置网络连接的第二传输线网的技术方案,较好的解决了该问题,能够用于Ka波段的通信领域。

    一种t型电极铌酸锂电光调制器及设计方法

    公开(公告)号:CN117539079A

    公开(公告)日:2024-02-09

    申请号:CN202311427743.2

    申请日:2023-10-31

    Abstract: 本发明涉及电光调制器技术领域,具体涉及一种t型电极铌酸锂电光调制器及设计方法,包括衬底、缓冲层、光波导、金属电极和过渡层,光波导为X或Y型切割LN薄膜,采用传统的脊状结构,光波导粘接在衬底上的厚SiO2缓冲层上,薄膜可以通过多种工艺制备,如离子注入、晶圆键合和热切片,金属电为t型金属电极,可有效降低电损耗,获得高带宽,为了提高电光重叠系数,减少光吸收损失,使用0.2um的二氧化硅过渡层连接金属电极和光波导,金属电极沿光波导的Z轴排列,t型电极铌酸锂电光调制器在1cm调制长度下实现了近1.4V的半波电压,对电光调制器的设计具有重要的指导意义。

    一种新型电极下沉式薄膜铌酸锂调制器

    公开(公告)号:CN117518534A

    公开(公告)日:2024-02-06

    申请号:CN202311480895.9

    申请日:2023-11-08

    Abstract: 本发明涉及光通信器件领域,具体涉及一种新型电极下沉式薄膜铌酸锂调制器,包括衬底层、低折射率下盖层、薄膜铌酸锂层、低折射率上盖层和电极组件;低折射率下盖层与衬底层连接,并位于衬底层的一侧,薄膜铌酸锂层与低折射率下盖层连接,并位于低折射率下盖层远离衬底层的一侧,低折射率上盖层与薄膜铌酸锂层连接,并位于薄膜铌酸锂层远离低折射率下盖层的一侧,电极组件设置在薄膜铌酸锂层上,并位于薄膜铌酸锂层与低折射率上盖层之间,电极组件采用下沉式设计,这样使得薄膜铌酸锂层形成阶梯式的结构,其脊波导可以更紧密地限制光学模式,对损耗有显著影响,使其减少数量级。

Patent Agency Ranking