-
公开(公告)号:CN119710621A
公开(公告)日:2025-03-28
申请号:CN202411885009.5
申请日:2024-12-19
Applicant: 桂林电子科技大学 , 中国电子科技集团公司第三十四研究所
IPC: C23C16/40 , C23C16/448
Abstract: 本申请提供一种基于雾化学气相沉积制备镓铟氧化物薄膜的方法,该方法包括配置含有镓离子和铟离子的前驱体溶液,并取适量前驱体溶液放入超声雾化罐中;将一衬底放入管式炉的生长腔中,启动管式炉升温至预设温度,同时向生长腔中通入氮气;待管式炉升温至预设温度后启动超声雾化罐以对前驱体溶液进行雾化,雾化气体从管式炉的进气端进入生长腔,同时向生长腔内通入氮气和氧气的混合气体,生长腔内开始进行气相沉积反应;气相沉积反应一定时间后,管式炉降至室温,衬底上生长得到镓铟氧化物薄膜,化学式为(Ga1‑xInx)2O3,其中,0.1≤x≤0.5。该方法具有工艺步骤简单、薄膜结晶质量高、可见光透过率好、制备成本低等优点。
-
公开(公告)号:CN108110433A
公开(公告)日:2018-06-01
申请号:CN201711176679.X
申请日:2017-11-22
Applicant: 桂林电子科技大学
IPC: H01Q15/24
Abstract: 本发明公开一种基于石墨烯‑金属混合超表面的多功能THz极化转换器。自上而下由石墨烯‑金属混合超表面层、二氧化硅衬底层、硅介质基底层和金属地板层组成。石墨烯‑金属混合超表面层由多个石墨烯和金属超表面单元组成,这些石墨烯和金属超表面单元在二氧化硅衬底层的表面呈周期性排列。每个石墨烯和金属超表面单元由金属片和石墨烯片组成。金属片为蝶形,且金属片同时关于表面横向x轴对称和表面纵向y轴对称。本发明能够通过改变加载在石墨烯‑金属混合超表面层和硅介质基底层之间的偏置电压来达到调节石墨烯的费米能级的目的,从而实现本多功能极化转换器本体的线极化偏转和圆极化转换功能的切换。
-
公开(公告)号:CN107453012A
公开(公告)日:2017-12-08
申请号:CN201710813073.6
申请日:2017-09-11
Applicant: 桂林电子科技大学
Abstract: 本发明公开一种基于金属-石墨烯混合超表面的双功能调制器,自下而上由单晶硅衬底层、二氧化硅基底层、石墨烯结构层和金属带状线结构层组成;石墨烯结构层包括2个以上的石墨烯单元;每个石墨烯单元由上凸石墨烯环、下凹石墨烯环和2个微型缝隙开口组成;所有的石墨烯单元在二氧化硅基底层上呈规则矩阵排列;金属带状线结构层包括2条以上的金属带状线;每条金属带状线均为长条状;金属带状线的数量与石墨烯结构层的列数相同,每条金属带状线纵向延伸并覆盖在石墨烯结构层对应列的所有石墨烯单元上;所有金属带状线在石墨烯结构层上呈平行排列。本发明利用金属-石墨烯超表面能够在保证调制器调制性能情况下,可以根据激励场与阵列的相对方向变化实现两种模式电磁波的调控,即实现双功能。
-
公开(公告)号:CN117518354A
公开(公告)日:2024-02-06
申请号:CN202311480597.X
申请日:2023-11-08
Applicant: 中国电子科技集团公司第三十四研究所 , 桂林电子科技大学
Abstract: 本发明涉及铌酸锂光子芯片技术领域,具体涉及一种三叉戟结构薄膜铌酸锂模斑转换器,包括衬底、氧化物层、氮氧化硅波导和铌酸锂波导,铌酸锂波导在氮氧化硅波导内为三叉戟结构,传输部分为锥形结构。通过铌酸锂波导宽度的逐渐增大,波导对于光的限制作用增强,当波导宽度增大到一定程度时,光被限制在波导中,光斑尺寸随之减小,实现光纤与波导之间两种模斑的高效耦合,经过优化设计模斑转换器传输过程的透过率为0.99,三叉戟结构的铌酸锂波导和引用氮氧化硅波导更方便的与光纤连接,提高了耦合效率。
-
公开(公告)号:CN108365344B
公开(公告)日:2023-05-26
申请号:CN201810331489.9
申请日:2018-04-13
Applicant: 桂林电子科技大学
IPC: H01Q15/24
Abstract: 本发明公开一种基于有源超表面的功能可重构极化转换器,由介质基底层、有源超表面层和金属地板层组成;有源超表面层由多个相同的蝶形结构单元组成,这些蝶形结构单元在介质基底层的上表面呈规则矩阵式间隔排列;金属地板层由多条相同的条状金属片组成,这些条状金属片在介质基底的下表面呈并行式间隔排列;上述介质基底层上开设有多个金属过孔,金属贴片均通过对应的金属过孔与其正下方的条状金属片相连。本发明通过控制变容二极管的偏置电压实现器件功能的切换,使其具有线极化偏转、椭圆极化转换和圆极化转换等多重功能,解决了极化器功能单一的问题。
-
公开(公告)号:CN107240781A
公开(公告)日:2017-10-10
申请号:CN201710576122.9
申请日:2017-07-14
Applicant: 桂林电子科技大学
IPC: H01Q15/24
CPC classification number: H01Q15/244
Abstract: 本发明公开一种基于石墨烯的频率可调谐的宽带圆极化转换器,由介质基底层、设置在介质基底层上表面的石墨烯超表面层、以及设置在介质基底层下表面的石墨烯地板层组成;石墨烯超表面层为单层镂空的石墨烯片;即在该层石墨烯片上开设有多个呈矩阵排列的蝶形孔,每个蝶形孔均是由2个大小一致的等腰三角形孔通过顶角相对或相叠设置所形成的轴对称图形;石墨烯地板层由多层具有相同的性能参数的石墨烯片堆叠而成。本发明能够在很宽的频带实现线极化波到圆极化波的转换,并且具有很好的圆极化性能,较大程度拓展了基于石墨烯反射型极化器的调谐带宽,解决了由于干涉条件限制调谐带宽的问题。
-
公开(公告)号:CN119776773A
公开(公告)日:2025-04-08
申请号:CN202411877105.5
申请日:2024-12-18
Applicant: 桂林电子科技大学 , 中国电子科技集团公司第三十四研究所
Abstract: 本申请提供一种镓铟氧化物薄膜及其制备方法,该镓铟氧化物薄膜通过脉冲激光沉积法基于一衬底制备并包括主外延层和缓冲层,缓冲层连接在衬底与主外延层之间,且主外延层和缓冲层的化学式均为(Ga1‑xInx)2O3,其中,0.1≤x≤0.5。该制备方法包括:提供一衬底;通过脉冲激光沉积法在衬底上沉积一层镓铟氧化物的缓冲层,得到中间产物;通过脉冲激光沉积法在缓冲层上再沉积一层镓铟氧化物的主外延层,制得镓铟氧化物薄膜。本申请通过在主外延层制备之前先制备一层薄的缓冲层,可提升薄膜的结晶质量,改善薄膜缺陷密度高等问题,减少镓铟氧化物薄膜缺陷,从而获得高质量的镓铟氧化物薄膜。
-
公开(公告)号:CN107240781B
公开(公告)日:2023-03-24
申请号:CN201710576122.9
申请日:2017-07-14
Applicant: 桂林电子科技大学
IPC: H01Q15/24
Abstract: 本发明公开一种基于石墨烯的频率可调谐的宽带圆极化转换器,由介质基底层、设置在介质基底层上表面的石墨烯超表面层、以及设置在介质基底层下表面的石墨烯地板层组成;石墨烯超表面层为单层镂空的石墨烯片;即在该层石墨烯片上开设有多个呈矩阵排列的蝶形孔,每个蝶形孔均是由2个大小一致的等腰三角形孔通过顶角相对或相叠设置所形成的轴对称图形;石墨烯地板层由多层具有相同的性能参数的石墨烯片堆叠而成。本发明能够在很宽的频带实现线极化波到圆极化波的转换,并且具有很好的圆极化性能,较大程度拓展了基于石墨烯反射型极化器的调谐带宽,解决了由于干涉条件限制调谐带宽的问题。
-
公开(公告)号:CN107453012B
公开(公告)日:2022-02-22
申请号:CN201710813073.6
申请日:2017-09-11
Applicant: 桂林电子科技大学
Abstract: 本发明公开一种基于金属‑石墨烯混合超表面的双功能调制器,自下而上由单晶硅衬底层、二氧化硅基底层、石墨烯结构层和金属带状线结构层组成;石墨烯结构层包括2个以上的石墨烯单元;每个石墨烯单元由上凸石墨烯环、下凹石墨烯环和2个微型缝隙开口组成;所有的石墨烯单元在二氧化硅基底层上呈规则矩阵排列;金属带状线结构层包括2条以上的金属带状线;每条金属带状线均为长条状;金属带状线的数量与石墨烯结构层的列数相同,每条金属带状线纵向延伸并覆盖在石墨烯结构层对应列的所有石墨烯单元上;所有金属带状线在石墨烯结构层上呈平行排列。本发明利用金属‑石墨烯超表面能够在保证调制器调制性能情况下,可以根据激励场与阵列的相对方向变化实现两种模式电磁波的调控,即实现双功能。
-
公开(公告)号:CN106129543A
公开(公告)日:2016-11-16
申请号:CN201610682339.3
申请日:2016-08-17
Applicant: 桂林电子科技大学
Abstract: 本发明为一种基于石墨烯DC接触的双功能极化转换器,基底包括金属底层、硅中层和二氧化硅表层,人工结构为在基底表层上排成阵列的单元结构,所述单元结构为相互正交、中心重合的“工”型石墨烯臂与金属臂,石墨烯臂压在金属臂下方。纵向的石墨烯臂相互连接,横向的金属臂之间有间隙,单元结构阵列的中心处于基底中心线上,纵横向为10~200个单元结构,数量相等。“工”型石墨烯臂与金属臂均以纵向中心线左右对称、以横向中心线上下对称。本发明不改变结构参数,改变偏置电压Vg即可实现线极化和圆极化转换两种功能的切换;石墨烯臂首尾相连形成DC接触,利于石墨烯偏压的一体化控制;结构简单,易于加工生产;转换效率高达99%。
-
-
-
-
-
-
-
-
-