-
公开(公告)号:CN107612514A
公开(公告)日:2018-01-19
申请号:CN201711034833.X
申请日:2017-10-30
Applicant: 桂林电子科技大学 , 桂林斯壮微电子有限责任公司
Abstract: 本发明涉及一种Ka波段MMIC低噪声放大器,主要解决现有技术中的噪声系数高、带内增益平坦度差、线性度差的技术问题。通过采用包括两级放大器、λ/4传输线结构以及三级匹配网络,该两级放大器包括第一级场效应晶体管放大器,第一级栅极偏置网络,第一级漏极偏置网络以及第一级源极的电阻、第一级源极的电容并联网络,第二级放大器,第二级栅极偏置网络,第二级漏极偏置网络以及第二级源极的电阻、电容并联网络;该λ/4传输线结构包括与第一级栅极偏置网络连接的第一传输线网,以及与第一级漏极偏置网络连接的第二传输线网的技术方案,较好的解决了该问题,能够用于Ka波段的通信领域。
-
公开(公告)号:CN107612514B
公开(公告)日:2024-01-02
申请号:CN201711034833.X
申请日:2017-10-30
Applicant: 桂林电子科技大学 , 桂林斯壮微电子有限责任公司
Abstract: 本发明涉及一种Ka波段MMIC低噪声放大器,主要解决现有技术中的噪声系数高、带内增益平坦度差、线性度差的技术问题。通过采用包括两级放大器、λ/4传输线结构以及三级匹配网络,该两级放大器包括第一级场效应晶体管放大器,第一级栅极偏置网络,第一级漏极偏置网络以及第一级源极的电阻、第一级源极的电容并联网络,第二级放大器,第二级栅极偏置网络,第二级漏极偏置网络以及第二级源极的电阻、电容并联网络;该λ/4传输线结构包括与第一级栅极偏置网络连接的第一传输线网,以及与第一级漏极偏置网络连接的第二传输线网的技术方案,较好的解决了该问题,能够用于Ka波段的通信领域。
-
公开(公告)号:CN107833923A
公开(公告)日:2018-03-23
申请号:CN201711034834.4
申请日:2017-10-30
Applicant: 桂林电子科技大学 , 桂林斯壮微电子有限责任公司
IPC: H01L29/78 , H01L29/20 , H01L29/423 , H01L21/336 , H01L21/28
CPC classification number: H01L29/7831 , H01L29/20 , H01L29/401 , H01L29/42356 , H01L29/66446 , H01L29/66484
Abstract: 本发明公开了一种能够提高栅控能力以及减小短沟道效应的硅基InGaAs沟道双栅MOSFET器件及其制备方法。所述硅基InGaAs沟道双栅MOSFET器件包括单晶硅衬底、介质键合层、隔离层、背栅电极、背栅介质层、背栅界面控制层、InGaAs沟道层、上界面控制层、III-V族半导体源漏层、源漏金属层、顶栅介质层、顶栅电极;该制备方法包括步骤,首先在单晶硅衬底上设置第一键合片;然后在III-V族半导体外延衬底上依次沉积背栅介质层的材料层、背栅电极的材料层、在隔离层、第二键合片;将第一键合片和所述第二键合片键合在一起,形成介质键合层;然后再成形、源漏金属层、顶栅介质层、顶栅电极。采用该硅基InGaAs沟道双栅MOSFET器件及其制备方法能够提高MOSFET器件的栅控能力,满足高性能III-V族CMOS技术要求。
-
公开(公告)号:CN207441705U
公开(公告)日:2018-06-01
申请号:CN201721428381.9
申请日:2017-10-30
Applicant: 桂林电子科技大学 , 桂林斯壮微电子有限责任公司
IPC: H01L29/78 , H01L29/20 , H01L29/423 , H01L21/336 , H01L21/28
Abstract: 本实用新型公开了一种能够提高栅控能力以及减小短沟道效应的硅基InGaAs沟道双栅MOSFET器件。所述硅基InGaAs沟道双栅MOSFET器件包括单晶硅衬底、介质键合层、隔离层、背栅电极、背栅介质层、背栅界面控制层、InGaAs沟道层、上界面控制层、III-V族半导体源漏层、源漏金属层、顶栅介质层、顶栅电极;采用该硅基InGaAs沟道双栅MOSFET器件能够提高MOSFET器件的栅控能力,满足高性能III-V族CMOS技术要求。(ESM)同样的发明创造已同日申请发明专利
-
公开(公告)号:CN207442796U
公开(公告)日:2018-06-01
申请号:CN201721410659.X
申请日:2017-10-30
Applicant: 桂林电子科技大学 , 桂林斯壮微电子有限责任公司
Abstract: 本实用新型涉及一种Ka波段MMIC低噪声放大器,主要解决现有技术中的噪声系数高、带内增益平坦度差、线性度差的技术问题。通过采用包括两级放大器、λ/4传输线结构以及三级匹配网络,该两级放大器包括第一级场效应晶体管放大器,第一级栅极偏置网络,第一级漏极偏置网络以及第一级源极的电阻、第一级源极的电容并联网络,第二级放大器,第二级栅极偏置网络,第二级漏极偏置网络以及第二级源极的电阻、电容并联网络;该λ/4传输线结构包括与第一级栅极偏置网络连接的第一传输线网,以及与第一级漏极偏置网络连接的第二传输线网的技术方案,较好的解决了该问题,能够用于Ka波段的通信领域。(ESM)同样的发明创造已同日申请发明专利
-
公开(公告)号:CN109059971B
公开(公告)日:2024-04-30
申请号:CN201811114621.7
申请日:2018-09-25
Applicant: 桂林电子科技大学
IPC: G01D5/353
Abstract: 本发明提出了一种三孔缝结构的传感器,利用此结构的三个偶极子谐振单元的明模式谐振与暗模式谐振的互作用,产生具有陡的非对称的响应谱线型,从而设计出具有法诺共振现象透射谱的三孔缝结构的传感器。在相同的开关对比度情况下,非对称响应谱线线型所需的波长偏移或者间隔比由单一的谐振腔得到的对称的类洛仑兹线型的谱宽小,可增加波分复用器的波长分辨率以及生物传感器的灵敏度。通过调控结构的几何参数,透射谱中出现了法诺峰的不同程度的红移,可实现法诺谐振的调谐,由缩比定理等比例地改变结构参数的尺度能实现传感器中谐振频率频段的变化,即工作频段不限于THz频段,本传感器可用于波分复用器、光开关、生物传感器等领域。
-
公开(公告)号:CN107742606B
公开(公告)日:2024-04-02
申请号:CN201711030930.1
申请日:2017-10-30
Applicant: 桂林电子科技大学
IPC: H01L21/20
Abstract: 本发明公开了一种键合晶圆的结构及其制备方法,主要解决现有技术键合强度低以及键合的空隙率高的技术问题。该键合晶圆的结构及其制备方法通过将需要键合的两块晶圆进行清洗、蒸发沉积金属Al,在任一晶圆表面旋涂光刻胶、软烘烤、UV曝光、光刻胶显影,刻蚀形成等间距通道、在氧环境下低温键合以及低温退火键合得到晶圆键合结构,该晶圆键合结构包括上下两层晶圆层,以及在该两层晶圆层之间氧化与键合同时进行,使得键合后的表面具有三氧化二铝和气体混合的气体通道的技术方案,该键合晶圆的结构及其制备方法,实现了晶圆之间空隙小、键合强度高,以及基于SOI结构制造的器件散热性好;能够用于晶圆的低温键合。
-
公开(公告)号:CN117276319A
公开(公告)日:2023-12-22
申请号:CN202311476740.8
申请日:2023-11-07
Applicant: 桂林电子科技大学
Abstract: 本发明公开一种具有反向倾斜介质槽的功率器件,在有源区增设反向倾斜的介质槽。反向倾斜介质槽阻挡载流子的沿表面向源极运动,载流子只能向漏极外侧向下运动,在有源层底部方向折回向源极运动,形成折叠型耐压路径,显著提高器件的有效横向耐压长度,能解决减小器件表面长度、提高耐压的技术难题;反向倾斜介质槽可以在传统功率器件结构的基础上,结合硅片倾斜深槽刻蚀和介质填充形成,该工艺步骤完全与CMOS/SOI工艺兼容,工艺简单。此外,还在介质槽外形成的反型的掺杂层,可以改善体电场分布,降低介质槽拐角电场集中的现象,特别适合于高耐压功率器件的设计。
-
公开(公告)号:CN116607111A
公开(公告)日:2023-08-18
申请号:CN202310443818.X
申请日:2023-04-20
Applicant: 桂林电子科技大学
Abstract: 本申请提供一种基于柔性衬底生长的铟镓氧化物薄膜及其制备方法,将准备好的柔性衬底放入脉冲激光沉积装置的生长腔内,设置生长参数,使得柔性衬底上生长一层铟镓氧化物薄膜。通过该方法可制备出高结晶质量的铟镓氧化物薄膜,在氧化镓中掺杂铟离子,可以拓宽带隙范围。该制备方法工艺步骤简单,易操作,进而可有效降低制备成本。
-
公开(公告)号:CN112098366B
公开(公告)日:2022-10-25
申请号:CN202010733371.6
申请日:2020-07-27
Applicant: 桂林电子科技大学
IPC: G01N21/41
Abstract: 本发明公开了一种实现三个Fano共振的内嵌双U型折射率传感器,该传感器由一个大的倒U型谐振腔内嵌一个小的倒U型谐振腔和金属平板组成的金属‑电介质‑金属(MIM)波导结构。当光波在波导中传输时耦合到两个大小不同的倒U型谐振腔,满足共振条件时,可以产生Fano共振,在透射谱上出现三个尖锐非对称的共振峰。Fano共振对结构参数的变化异常敏感,因此通过调节U型谐振器的r1,r3,h1,h2和填充介质的折射率来控制Fano共振峰的线形和谐振波长。本发明在红外波段可以获得较高的灵敏度和品质因数(FOM),分别为2275nm/RIU,25540。该发明在光学集成电路、光电子器件,特别是微纳生物化学传感器等领域有着广阔的应用前景。
-
-
-
-
-
-
-
-
-