一种具有球面运动轨迹的光学目标运动仿真系统

    公开(公告)号:CN106338222B

    公开(公告)日:2017-10-24

    申请号:CN201610847376.5

    申请日:2016-09-23

    Abstract: 本发明公开了一种具有球面运动轨迹的光学目标运动仿真系统,所述光学目标运动仿真系统包括光学目标模拟器、球面运动系统以及支撑平台机构,所述球面运动系统包括方位圆弧运动机构、俯仰圆弧运动机构和导轨连接件,光学目标模拟器侧面安装在俯仰圆弧运动机构上,光学目标模拟器的光轴与安装面平行,通过调节导轨连接件的位置使光学目标模拟器做俯仰圆弧运动时光轴的回转中心与方位圆弧运动机构的圆心的连线垂直于方位圆弧运动的导轨面,从而实现了光学目标模拟器的球面运动轨迹,且光学目标模拟器的光轴始终指向球面运动系统的球心。相比其他光学目标运动仿真系统,该光学目标运动仿真系统具有结构紧凑和成本低的特点。

    一种基于交互多模型滤波的导引头视线转率提取方法

    公开(公告)号:CN112577489B

    公开(公告)日:2024-05-07

    申请号:CN202011422730.2

    申请日:2020-12-08

    Inventor: 秦雷 李君龙

    Abstract: 本发明的一个实施例公开一种基于交互多模型滤波的导引头视线转率提取方法,包括:S10、根据导引头视线空间运动方程得到视线转率方程;S20、根据视线转率方程得到系统状态方程;S30、根据系统状态方程得到系统量测方程;S40、基于IMM视线转率滤波得到导引头视线转率。本发明采用一种基于交互多模型的导引头视线转率提取方法,可对末制导视线转率进行高精度滤波估计,基于IMM方法可以实现高精度视线转率提取,从而进行高精度制导控制。

    反大气层内或临近空间机动目标视线角速率估计方法

    公开(公告)号:CN115342815B

    公开(公告)日:2024-04-26

    申请号:CN202211037198.1

    申请日:2022-08-26

    Abstract: 反大气层内或临近空间机动目标视线角速率估计方法,它属于导弹制导控制技术领域。本发明解决了由于目标加速度的估计结果不精确以及拦截导弹弹体的冲击振动,导致对目标与导弹视线角速率估计的精度低的问题。本发明基于机动目标跟踪滤波器跟踪得到目标加速度信息,再结合目标加速度信息和冲击振动带来的扰动信息,采用无迹卡尔曼粒子滤波算法对视线角速率进行滤波估计,克服了由于现有的目标与导弹角速度估计方法中目标加速度的不精确以及弹体的冲击振动所带来的视线角速率估计精度低的问题,进而根据本发明的视线角速率的估计结果提高制导精度。本发明方法可以应用于导弹制导控制技术领域。

    一种基于变结构多模型的强机动目标跟踪方法

    公开(公告)号:CN111797478B

    公开(公告)日:2022-11-11

    申请号:CN202010734714.0

    申请日:2020-07-27

    Abstract: 一种基于变结构多模型的强机动目标跟踪方法,涉及目标跟踪领域,针对临近空间高速强机动目标的跟踪时,目标跟踪精确度低的问题,包括步骤一:利用目标飞行器的动力学特性构建动力学跟踪模型集,然后获取机动目标跟踪系统的状态方程集;步骤二:建立系统测量模型,并根据建立的系统测量模型得到系统的测量方程和测量噪声;步骤三:基于系统的状态方程集、系统的测量方程和测量噪声,对目标飞行器的运动状态以及气动参数进行递推估计。本发明基于目标飞行器的动力学特性构建动力学跟踪模型集,提高了目标运动的描述精度,进而采用改进的变结构多模型跟踪算法提高了目标跟踪精确度。

    一种带端框锥形舱体的挤压成形模具及方法

    公开(公告)号:CN115041536A

    公开(公告)日:2022-09-13

    申请号:CN202210978109.7

    申请日:2022-08-16

    Abstract: 本发明涉及一种带端框锥形舱体的挤压成形模具及方法,属于金属塑性加工工艺及成形技术领域。包括省力反挤压模具和省力缩口模具,所述省力反挤压模具用于成形目标构件的直壁筒形件和端框,所述省力缩口模具用于对带端框的直壁筒形件进行减径缩口处理。通过设置省力反挤压模具和省力缩口模具,通过反挤压和缩口减径实现带端框锥形舱体的挤压成形,成形过程可以实现端框的挤压成形,相比传统锥形件成形工艺的机加工切削端框,不仅挤压成形大应变量的端框可以由于晶粒细化的强化效果实现端框部分的强化,而且材料利用率提高,同时能够解决车断流线会降低端框的承载能力而出现力学性能小、难以满足服役条件等问题。

    一种基于序列凸优化的高超声速飞行器轨迹规划方法

    公开(公告)号:CN111897214B

    公开(公告)日:2022-05-13

    申请号:CN202010591441.9

    申请日:2020-06-24

    Abstract: 一种基于序列凸优化的高超声速飞行器轨迹规划方法,它属于高超声速飞行器轨迹规划技术领域。本发明解决了传统序列凸优化方法存在的可行性问题和收敛性问题。本发明的序列凸优化部分针对高超滑翔飞行段展开设计,提出了带罚函数的置信域加速算法。算法分为两步,第一步对非线性约束引入松弛变量,放弃置信域约束,目的是能够在更大的解空间中寻找可行解。待微分方程约束误差足够小后,转入下一步规划。第二步将目标函数重设为最小化置信域误差,主要解决子问题与原问题不等价的问题。基于这种方式能够在较差初值下,准确而迅速地完成多约束轨迹规划工作,具有极大实用性。本发明可以应用于高超声速飞行器轨迹规划。

    一种用于飞行器上的格栅罩体结构及其制备方法

    公开(公告)号:CN111470068B

    公开(公告)日:2021-12-14

    申请号:CN202010191075.8

    申请日:2020-03-18

    Abstract: 本发明公开了一种用于飞行器上的格栅罩体结构及其制备方法,所述格栅罩体结构包括:内蒙皮;外蒙皮;以及位于内蒙皮与外蒙皮之间的若干纵筋;所述格栅罩体结构还包括;位于由相邻的纵筋以及内蒙皮形成的凹槽内的若干盒形件,以及所述相邻的盒型件间形成的与所述纵筋垂直的若干横筋。本发明所述技术方案采用由内蒙皮+格栅夹层+外蒙皮组成,实现格栅罩体结构的轻质与高刚度的兼顾性,具有更高的结构性能;本发明所述技术方案采用共固化成型工艺方法,实现格栅罩体结构的一体化制造。

    高模碳纤维增强树脂基复合材料纵向压缩性能测试方法

    公开(公告)号:CN110274825B

    公开(公告)日:2021-11-30

    申请号:CN201910644246.5

    申请日:2019-07-17

    Abstract: 本发明公开一种高模碳纤维增强树脂基复合材料纵向压缩性能测试方法,包括步骤如下:试样制备,所述试样第一试样和第二试样,所述第一试样为[90°/0°/90°]n层合板,所述第二试样为[0°]n层合板,其中n≥1;沿加载方向对所述试样的工作段两侧表面粘贴应变片;将所述试样与夹具安装固定,使所述试样的端面与所述夹具的端面处于同一平面内,将安装有所述试样的夹具放置于对中良好且固定的试验机平台之间;对所述试样进行加载,所述试验机以恒定速率对所述试样施加压缩载荷直至所述试样失效,记录此时的载荷、位移和应变数据;试验结果计算:对所述第一试样的测试数据按公式(1)计算复合材料纵向压缩强度,σcu0=k·σcc (1)。

Patent Agency Ranking