飞行器减载制导方法、设备、存储介质

    公开(公告)号:CN117872731A

    公开(公告)日:2024-04-12

    申请号:CN202311623119.X

    申请日:2023-11-30

    Abstract: 本申请提供一种飞行器减载制导方法、设备、存储介质,该方法包括:在飞行器飞行状态的坐标系下,建立飞行器减载制导律的训练环境;获取训练环境赋予的当前时刻的状态量;根据当前时刻的状态量和强化学习神经网络模型,采样得到当前时刻的动作输出量;根据当前时刻的动作输出量,确定训练环境赋予的奖励值和下一时刻的状态量;基于当前时刻的状态量,当前时刻的动作输出量,奖励值和下一时刻的状态量,形成训练样本;根据训练样本,对强化学习神经网络模型进行训练,得到飞行器上升段的减载制导律。本申请提供的方法可以解决飞行器上升段在未知风场下的减载制导问题。

    一种飞行控制算法一体化训练平台

    公开(公告)号:CN114167748B

    公开(公告)日:2024-04-09

    申请号:CN202111247331.1

    申请日:2021-10-26

    Abstract: 本发明公开了一种飞行控制算法一体化训练平台,属于机器学习技术领域,能够保证飞行控制算法训练,以及验证设计的通用性和易用性,进而提高了飞行控制算法一体化训练和验证设计的效率。平台包括:控制器、机器学习框架模块和可视化飞行仿真环境;其中:所述可视化飞行仿真环境包括动力学模型、视景仿真模型和调用接口;所述可视化飞行仿真环境通过所述调用接口与所述机器学习框架模块相连接;所述机器学习框架模块用于实现所述控制器和所述可视化飞行仿真环境之间的数据交互;所述视景仿真模型用于展示飞行控制算法的一体化训练过程中的飞行状态信息;所述动力学模型与所述视景仿真模型之间建立通讯连接。

    一种基于决策树的飞行器动力系统故障在线辨识方法

    公开(公告)号:CN111221345B

    公开(公告)日:2023-04-14

    申请号:CN202010076008.1

    申请日:2020-01-23

    Abstract: 本发明涉及一种基于决策树的飞行器推力故障在线辨识方法,适用于飞行器飞行过程中典型动力系统推力故障在线辨识领域。针对控制系统飞行运动信息(如飞行位置、速度、加速度、转速、姿态角、角速度等)进行数据融合生成,并生成决策树,采用训练好的决策树对主发动机故障进行辨识,能够有效实现对故障类型的实时准确建模判别。考虑飞行器质心运动、扰心运动、结构干扰、气动力及力矩等因素,建立更加真实可信仿真模型,生成可信的数据样本,生成决策树,本发明可对飞行器推力故障进行实时在线辨识,可准确辨识出发动机故障。

    一种基于自回归模型与光纤感知的弹性频率在线辨识方法

    公开(公告)号:CN112781712A

    公开(公告)日:2021-05-11

    申请号:CN202011555354.4

    申请日:2020-12-24

    Abstract: 本发明涉及一种基于自回归模型与光纤感知的弹性频率在线辨识方法,包括步骤如下:(1)将带有光栅的光纤传感器粘贴在火箭箭体表面,光纤传感器的光纤末端连接光纤解调仪;(2)控制光纤解调仪发出光信号,通过分析反射光的数据得到反射光的波长;(3)当箭体飞行过程中产生弹性振动时,使用光纤解调仪对箭体上光纤传感器发送的光栅波长变化数据进行采集;(4)根据波长数据和光栅固有特性,计算出应变数据,利用自回归模型对应变数据进行功率谱分析,辨识出箭体各阶弹性模态频率及对应的阻尼比。

    一种火箭着陆轨迹规划方法及装置

    公开(公告)号:CN111597702A

    公开(公告)日:2020-08-28

    申请号:CN202010390797.6

    申请日:2020-05-11

    Abstract: 一种火箭着陆轨迹规划方法及装置,包括:根据火箭发动机推力调节能力,计算着陆段采用最大推力和最小推力两种状态完成着陆的最大纵向速度-高度剖面和最小纵向速度-高度剖面;计算不同高度下所述最大纵向速度-高度剖面和最小纵向速度-高度剖面对应的速度平均值,进而得到可行域最大的纵向速度-高度标准剖面;根据实际飞行高度变化趋势以及所述纵向速度-高度标准剖面,最小化飞行过程期望纵向速度与实际纵向速度的偏差,构建可行域最大化的优化目标函数;根据所述优化目标函数规划火箭着陆轨迹。采用本申请中的方案,提升了在线规划的着陆轨迹对偏差的适应能力,有利于火箭安全着陆。

    一种基于决策树的飞行器动力系统故障在线辨识方法

    公开(公告)号:CN111221345A

    公开(公告)日:2020-06-02

    申请号:CN202010076008.1

    申请日:2020-01-23

    Abstract: 本发明涉及一种基于决策树的飞行器推力故障在线辨识方法,适用于飞行器飞行过程中典型动力系统推力故障在线辨识领域。针对控制系统飞行运动信息(如飞行位置、速度、加速度、转速、姿态角、角速度等)进行数据融合生成,并生成决策树,采用训练好的决策树对主发动机故障进行辨识,能够有效实现对故障类型的实时准确建模判别。考虑飞行器质心运动、扰心运动、结构干扰、气动力及力矩等因素,建立更加真实可信仿真模型,生成可信的数据样本,生成决策树,本发明可对飞行器推力故障进行实时在线辨识,可准确辨识出发动机故障。

    一种基于BP神经网络的飞行器推力故障在线辨识方法

    公开(公告)号:CN111176263A

    公开(公告)日:2020-05-19

    申请号:CN202010076043.3

    申请日:2020-01-23

    Abstract: 本发明涉及一种基于BP神经网络的飞行器推力故障在线辨识方法,针对控制系统飞行运动信息进行数据融合生成,并训练BP神经网络,采用训练好的BP神经网络对主发动机故障进行辨识,能够有效实现对故障类型的实时准确建模判别。考虑飞行器质心运动、扰心运动、结构干扰、气动力及力矩等因素,建立更加真实可信仿真模型,生成可信的数据样本,对BP神经网络进行训练,本发明可对飞行器推力故障进行实时在线辨识,可准确辨识出哪台发动机故障,以及故障程度。本发明所需计算资源小,可嵌入现有飞行控制计算机,进行飞行过程中的故障实时辨识。发挥控制系统作用,掌握新的核心技术,解决非致命动力故障导致的飞行失利问题。

Patent Agency Ranking