-
公开(公告)号:CN114167747B
公开(公告)日:2024-04-09
申请号:CN202111247260.5
申请日:2021-10-26
Applicant: 北京航天自动控制研究所
IPC: G05B17/02
Abstract: 本发明公开了一种飞行控制算法一体化训练平台的构建方法,属于机器学习技术领域,能够保证飞行控制算法训练,以及验证设计的通用性和易用性,进而提高了飞行控制算法一体化训练和验证设计的效率。方法包括:构建视景仿真模型;所述视景仿真模型展示飞行控制算法的一体化训练过程中的飞行状态信息;构建执行所述飞行控制算法的控制器与可视化飞行仿真环境之间数据交互的机器学习框架模块,并通过所述机器学习框架模块由所述可视化飞行仿真环境向所述控制器发送飞行状态信息,由所述控制器向所述可视化飞行仿真环境发送控制指令。
-
公开(公告)号:CN117826591A
公开(公告)日:2024-04-05
申请号:CN202311808632.6
申请日:2023-12-26
Applicant: 北京航天自动控制研究所
IPC: G05B13/04
Abstract: 本发明一种基于长短期记忆网络的控制律自动设计方法,借鉴深度学习中网络架构搜索方法经验,利用循环神经网络在时序关联性发掘方面的优势,将控制律结构设计问题转化为有向无环图拓扑关系自动搜索问题,实现飞行控制律控制结构的自动生成,并基于遗传算法实现给定控制律结构下参数的自动整定,目的在于克服当前控制律自动优化只能针对已知控制器结构利用启发式算法对控制器参数进行自动整定的局限,降低了人工设计工作量,提升了复杂设计输入条件下的控制效果。
-
公开(公告)号:CN115857530A
公开(公告)日:2023-03-28
申请号:CN202211551858.8
申请日:2022-12-05
Applicant: 北京航天自动控制研究所
IPC: G05D1/08
Abstract: 本公开属于航天飞行器控制领域,涉及一种基于TD3多经验池强化学习的飞行器免解耦姿态控制方法,包括:建立飞行器姿态控制任务的马尔可夫过程,确定飞行任务的状态、动作和奖励;采用TD3强化学习算法对行为网络和评价网络进行训练,结合多经验池经验回放算法实现TD3算法中所有神经网络的快速收敛;将TD3算法训练好的行为网络作为神经网络控制器部署到飞行器中实现飞行器的免解耦姿态控制。通过上述算法,可以实现一个多通道免解耦的神经网络姿态控制器的训练,实现算法训练过程较快收敛,且训练出来的控制器对环境噪声及飞行器本体不确定性具有较强的适应能力。
-
公开(公告)号:CN115556966A
公开(公告)日:2023-01-03
申请号:CN202211287350.1
申请日:2022-10-20
Applicant: 北京航天自动控制研究所
Abstract: 本发明提出了一种低成本的可回收火箭型试验飞行器,用于实现各类运载火箭回收算法、运载火箭智能控制算法的飞行试验验证。飞行器自身结构设计简单坚固易修改,采用推力可调节的航空涡喷发动机可实现火箭下落时的稳定着陆控制。飞行器通过动力系统和执行机构可实现全部六自由度的位置及姿态运动。飞行器配备的控制系统算力较强,通过箭载飞控机与算力强大的数据处理计算机配合,可实现中等规模深度学习算法IP核的搭载和多核并行算法的搭载试验。飞行器飞控软件内部设有容错制导律,可在飞行器试验算法失控时,可切换至容错制导律实现飞行器安全飞行。同时,飞行器头部的应急回收装置可保证执行机构失效时飞行器的安全着陆。
-
公开(公告)号:CN114167748A
公开(公告)日:2022-03-11
申请号:CN202111247331.1
申请日:2021-10-26
Applicant: 北京航天自动控制研究所
IPC: G05B17/02
Abstract: 本发明公开了一种飞行控制算法一体化训练平台,属于机器学习技术领域,能够保证飞行控制算法训练,以及验证设计的通用性和易用性,进而提高了飞行控制算法一体化训练和验证设计的效率。平台包括:控制器、机器学习框架模块和可视化飞行仿真环境;其中:所述可视化飞行仿真环境包括动力学模型、视景仿真模型和调用接口;所述可视化飞行仿真环境通过所述调用接口与所述机器学习框架模块相连接;所述机器学习框架模块用于实现所述控制器和所述可视化飞行仿真环境之间的数据交互;所述视景仿真模型用于展示飞行控制算法的一体化训练过程中的飞行状态信息;所述动力学模型与所述视景仿真模型之间建立通讯连接。
-
公开(公告)号:CN114167747A
公开(公告)日:2022-03-11
申请号:CN202111247260.5
申请日:2021-10-26
Applicant: 北京航天自动控制研究所
IPC: G05B17/02
Abstract: 本发明公开了一种飞行控制算法一体化训练平台的构建方法,属于机器学习技术领域,能够保证飞行控制算法训练,以及验证设计的通用性和易用性,进而提高了飞行控制算法一体化训练和验证设计的效率。方法包括:构建视景仿真模型;所述视景仿真模型展示飞行控制算法的一体化训练过程中的飞行状态信息;构建执行所述飞行控制算法的控制器与可视化飞行仿真环境之间数据交互的机器学习框架模块,并通过所述机器学习框架模块由所述可视化飞行仿真环境向所述控制器发送飞行状态信息,由所述控制器向所述可视化飞行仿真环境发送控制指令。
-
公开(公告)号:CN117872731A
公开(公告)日:2024-04-12
申请号:CN202311623119.X
申请日:2023-11-30
Applicant: 北京航天自动控制研究所
IPC: G05B13/04
Abstract: 本申请提供一种飞行器减载制导方法、设备、存储介质,该方法包括:在飞行器飞行状态的坐标系下,建立飞行器减载制导律的训练环境;获取训练环境赋予的当前时刻的状态量;根据当前时刻的状态量和强化学习神经网络模型,采样得到当前时刻的动作输出量;根据当前时刻的动作输出量,确定训练环境赋予的奖励值和下一时刻的状态量;基于当前时刻的状态量,当前时刻的动作输出量,奖励值和下一时刻的状态量,形成训练样本;根据训练样本,对强化学习神经网络模型进行训练,得到飞行器上升段的减载制导律。本申请提供的方法可以解决飞行器上升段在未知风场下的减载制导问题。
-
公开(公告)号:CN114167748B
公开(公告)日:2024-04-09
申请号:CN202111247331.1
申请日:2021-10-26
Applicant: 北京航天自动控制研究所
IPC: G05B17/02
Abstract: 本发明公开了一种飞行控制算法一体化训练平台,属于机器学习技术领域,能够保证飞行控制算法训练,以及验证设计的通用性和易用性,进而提高了飞行控制算法一体化训练和验证设计的效率。平台包括:控制器、机器学习框架模块和可视化飞行仿真环境;其中:所述可视化飞行仿真环境包括动力学模型、视景仿真模型和调用接口;所述可视化飞行仿真环境通过所述调用接口与所述机器学习框架模块相连接;所述机器学习框架模块用于实现所述控制器和所述可视化飞行仿真环境之间的数据交互;所述视景仿真模型用于展示飞行控制算法的一体化训练过程中的飞行状态信息;所述动力学模型与所述视景仿真模型之间建立通讯连接。
-
公开(公告)号:CN111258302B
公开(公告)日:2021-10-01
申请号:CN202010076009.6
申请日:2020-01-23
Applicant: 北京航天自动控制研究所
IPC: G05B23/02
Abstract: 本发明涉及一种基于LSTM神经网络的飞行器推力故障在线辨识方法,适用于飞行器飞行过程中典型动力系统推力故障在线辨识领域。针对控制系统飞行运动信息进行数据融合生成,并训练LSTM神经网络,采用训练好的LSTM神经网络对主发动机故障进行辨识,能够有效实现对故障类型的实时准确建模判别。考虑飞行器质心运动、扰心运动、结构干扰、气动力及力矩等因素,建立更加真实可信仿真模型,生成可信的数据样本,对LSTM神经网络进行训练,本发明可对飞行器推力故障进行实时在线辨识,可准确辨识出哪台发动机故障,以及故障程度。本发明搭建轻量级的神经网络,运算简单,辨识速度快。
-
公开(公告)号:CN114200950B
公开(公告)日:2023-06-02
申请号:CN202111248696.6
申请日:2021-10-26
Applicant: 北京航天自动控制研究所
IPC: G05D1/08
Abstract: 本发明公开了飞行姿态控制方法,属于机器学习技术领域,方法包括:构建飞行姿态控制律的学习所需的探索环境;根据所述探索环境输出的姿态角、姿态角速度,以及期望姿态角指令,构建所述飞行姿态控制律的学习所需的输入信号;将从所述飞行姿态控制律得到的舵机理论输出指令输入至舵机限幅单元,获取所述舵机限幅单元的输出结果,并将所述输出结果输入至所述探索环境;构建奖励回报单元,所述奖励回报单元反馈所述探索环境的姿态角的当前时刻奖励至所述飞行姿态控制律,并通过最大化总奖励优化所述飞行姿态控制律的学习;对所述飞行姿态控制律进行学习,获取最终的飞行姿态控制律,基于所述飞行姿态控制律对飞行姿态进行控制。
-
-
-
-
-
-
-
-
-