-
公开(公告)号:CN109116727A
公开(公告)日:2019-01-01
申请号:CN201811031880.3
申请日:2018-09-05
Applicant: 哈尔滨工程大学
IPC: G05B13/02
Abstract: 本发明属于海洋运载器运动控制领域,具体涉及一种基于低通滤波器的PID型一阶全格式无模型自适应航速控制算法;包括向海洋运载器下达期望航速指令即y*(k);通过传感器测得海洋运载器当前的实际航速y(k),并计算航速误差e(k);若|e(k)|小于预先设定的误差阈值e0,则认为海洋运载器航速收敛到期望航速,否则将e(k)作为基于低通滤波器的PID_FO_FFDL_MFAC算法的输入,并由该控制器解算出当前时刻的期望指令u(k),海洋运载器推进机构即螺旋桨或喷水推进等模式执行期望指令,海洋运载器航速发生改变;通过海洋运载器上搭载的传感器测得此刻海洋运载器的实际航速,本发明通过引入低通滤波器降低了微分项的引入对系统性能的不利影响,从而使得海洋运载器航速能够快速稳定收敛到期望航速。
-
公开(公告)号:CN108319140A
公开(公告)日:2018-07-24
申请号:CN201810106120.8
申请日:2018-02-02
Applicant: 哈尔滨工程大学
IPC: G05B13/04
Abstract: 本发明涉及一种重定义输出式无模型自适应航向控制方法及系统,给定航向系统的期望输出量y*(k)=f(r*,ψ*)并输入至无模型自适应控制器,将航向系统输出量y(k)=f(r,ψ)作为无模型自适应控制器的负反馈输入,通过无模型自适应控制器解算和在线辨识,输出期望输入u(k),期望输入u(k)输入至操纵机构,操纵机构执行期望输入指令,将执行结果输入至水中航行设备,改变水中航行设备的航向角速度r和航向角ψ,通过姿态传感器作为负反馈输入至无模型自适应控制器。本发明通过重定义舰船航向系统的输出,使得水中航行设备航向系统满足MFAC理论对受控系统“拟线性”假设条件的要求,即控制输入增加时,相应的受控系统输出是不减的。从而使得该重定义输出式MFAC算法适应于舰船的航向控制。
-
公开(公告)号:CN108163172A
公开(公告)日:2018-06-15
申请号:CN201810057281.2
申请日:2018-01-22
Applicant: 哈尔滨工程大学
Abstract: 本发明公开了一种水田无人风动艇,属于无人艇领域,包括主船体系统、动力系统和转向系统,主船体系统中的主船体为整个艇提供浮力,动力系统主要包括发动机和空气桨,发动机通过驱动空气桨的转动为整个艇提供动力,转向系统主要包括舵机、两个翼板和连杆机构,舵机通过连杆机构实现两个翼板的同时转动,进而实现艇的转向。与现有技术相比,本发明提供的水田无人风动艇吃水小,能够适用于浅水区域;采用空气桨作为推进装置,避免了传统螺旋桨推进时对水稻秧苗的破坏,也避免了传统喷水推进器在障碍物复杂的水域无法正常工作的弊端;巧妙设计的连杆机构,通过舵机的驱动,实现两块翼板的以相同的旋转角速度同时转动和停止。
-
公开(公告)号:CN107672737A
公开(公告)日:2018-02-09
申请号:CN201710815626.1
申请日:2017-09-08
Applicant: 哈尔滨工程大学
Abstract: 本发明属于高性能船舶设计和船舶运动姿态控制领域,尤其涉及一种兼顾快速性与耐波性的可变形滑行艇,解决了现有技术不能同时兼顾高速和高耐波性的问题,包括主船体,第一附体,第二附体,倒U型滑动轨道,球鼻艏和固定水翼。倒U型滑动轨道包括垂向导轨和横向导轨。横向导轨的末端连接垂向导轨,垂向导轨和横向导轨相互垂直。第一附体与第二附体和垂向导轨靠近水面的一端相连,分别位于主船体的两侧。球鼻艏安装在主船体的船艏底部,固定水翼对称地安装在球鼻艏的两侧。本发明使滑行艇通过改变艇体形态以适应不同等级的海况,在不大量损失快速性的条件下获得良好的耐波性,大大增强了滑行艇的适用范围与在恶劣海况下执行任务的能力。
-
公开(公告)号:CN106828838A
公开(公告)日:2017-06-13
申请号:CN201710053777.8
申请日:2017-01-24
Applicant: 哈尔滨工程大学
CPC classification number: B63G8/001 , B63C11/48 , B63G2008/005
Abstract: 本发明提供一种便携式流线型遥控水下机器人的结构,解决了现有框架式水下探测机器人结构复杂及抗流性能力差的问题。本发明具有流线型外壳,能够通过两个主推推进器、两个垂推推进器和两个垂直舵翼的配合实现机器人在水中遥控抗流探测,本发明具有结构简单、易于控制,较强的环境适应性和一定的可扩展性等一系列优点,本发明主要用于完成海洋环境探测任务。
-
公开(公告)号:CN106477008A
公开(公告)日:2017-03-08
申请号:CN201611055918.1
申请日:2016-11-25
Applicant: 哈尔滨工程大学
Abstract: 本发明提供一种三体流线型自主作业水下机器人平台,涉及一种水下机器人平台,属于水下机器人领域,包括框架、流线型外壳、电池仓、控制仓、推进系统、运动感知系统、水下视觉感知系统和两个机械手,流线型外壳覆盖在框架上,电池仓安装在流线型外壳的底部,控制仓设置在框架内,所述水下视觉系统和所述运动感知系统均安装在所述流线型外壳的前端,所述推进系统安装在流线型外壳上,两个所述机械手安装在框架上。本发明是能够在非结构化环境中通过水下机器人和机械手的协调运动实现对目标的自主、稳定和高精度作业的平台。
-
公开(公告)号:CN106275236A
公开(公告)日:2017-01-04
申请号:CN201610817793.5
申请日:2016-09-12
Applicant: 哈尔滨工程大学
CPC classification number: Y02T70/122 , B63B1/26 , B63B1/38 , B63B3/14 , B63B2001/387
Abstract: 本发明的目的在于提供高速高耐波双槽道细长型多体滑行艇,包括主船体和设置在主船体两侧的两个相同的片体,片体从10%船长处至船艉通过带有曲面的槽道与主船体相连接,片体在45%船长处之前的剖面呈带有折边的四边形并且其底面和内侧面为斜面的四边形,片体在45%船长处之前的截面积随着其与船艏的距离增加而增加,片体在45%船长处之后的剖面呈带有折边的四边形,且其截面积不变。本发明对称而细长的片体能够给滑行艇更高的航速,同时保证其耐波性与适航性。在正常航行过程中,船体上升,部分片体和槽道露出水面,槽道充当滑行面,并在船底部形成空气层,能有效的降低阻力,并能起到缓冲,减震的作用,提高滑行艇的耐波性。
-
公开(公告)号:CN104908910A
公开(公告)日:2015-09-16
申请号:CN201510271054.6
申请日:2015-05-25
Applicant: 哈尔滨工程大学
IPC: B63C11/52
Abstract: 本发明的目的在于提供一种水下探测设备自动收放装置,包括底座、推杆、电机、探测设备载体,底座上依次安装第一推杆支座、第二推杆支座、旋转轴支座、滑轮支座,推杆架在第一推杆支座和第二推杆支座上,电机的输出端端部安装齿轮,推杆的第一端部设置齿条,齿条与齿轮啮合,推杆的第二端部连接钢缆,旋转轴支座上安装旋转轴,旋转轴连接连接管,连接管与探测设备载体相连,滑轮支座上安装有滑轮,钢缆绕过滑轮并与连接管的中部相连,推杆处于放的状态时,连接管处于竖直状态,推杆处于收的状态时,连接管旋转至底座高度。本发明可以完成远程自主的长时间、大范围、低成本的水下探测任务。
-
公开(公告)号:CN101244756A
公开(公告)日:2008-08-20
申请号:CN200810064112.8
申请日:2008-03-13
Applicant: 哈尔滨工程大学
IPC: B63B43/12
Abstract: 本发明提供的是一种水密无人艇倾覆自动恢复装置。它由高压储气罐(1)、充气控制电磁阀(2)、排气控制电磁阀(3)、充气控制开关(4)、排气控制开关(5)、开关控制器(6)、气囊(8)、电池组(9)、充气通气管(11)和排气通气管(10)组成。本发明结构简单而且所采用的装置都比较普通廉价,采用高压空气来填充气囊,安全无污染,选用机械式开关控制器,成本低廉,制作方便却完全能实现自动控制的要求,避开了复杂而繁琐的控制机构和控制系统,仅需要十几伏的低压电池组就可以维持系统的正常工作,具有节能高效的优点。
-
公开(公告)号:CN1718378A
公开(公告)日:2006-01-11
申请号:CN200510010117.9
申请日:2005-06-24
Applicant: 哈尔滨工程大学
IPC: B25J13/00
Abstract: 本发明浮游式水下机器人运动的S面控制方法,包括步骤:基于短基线和深度计获取位置信息,基于罗经获取姿态角信息,基于多普勒速度计获取速度信息,通过控制器解算,通过螺旋桨和舵、翼执行运动。小范围定位时,通过六自由度位置偏差和偏差变化率作为输入的位置控制及精确动力定位。大范围航渡时,通过六自由度速度偏差和偏差变化率作为输入的速度控制。通过PD控制的指数化实现对水下机器人的非线性控制。本发明适用于浮游式水下机器人复杂的强非线性系统,参数数目少,便于调节,控制精度高。可实际应用于浮游式水下机器人控制系统设计,进行水下探测,考古,水下救捞,水下设施的维护和海洋领土的防御等。
-
-
-
-
-
-
-
-
-