-
公开(公告)号:CN115905363A
公开(公告)日:2023-04-04
申请号:CN202211555122.8
申请日:2022-12-05
Applicant: 北京航天自动控制研究所
Inventor: 周辉 , 谢宇嘉 , 王晓峰 , 李悦 , 赵雄波 , 吴松龄 , 盖一帆 , 路坤峰 , 李晓敏 , 张隽 , 弭寒光 , 董文杰 , 靳蕊溪 , 吴敏 , 赵冠杰 , 阳徽 , 费亚男 , 赵伟
IPC: G06F16/2458 , G06F16/2455 , G06F16/248
Abstract: 本发明涉及一种数据的实时排序系统,其包括控制单元,输入数据预处理单元,排序模块以及数据缓存与输出单元,所述控制单元用于实现所述输入数据预处理单元和排序模块的控制,所述输入数据预处理单元用于确定所述排序模块是否能够接收新的外部数据并用于判定是否将序列数据输入所述排序模块,所述排序模块用于对输入其内的序列数据进行排序,所述数据缓存与输出单元用于对排序后的数据进行信息缓存和输出。其降低了输入数据从外部存储器读取的次数,降低了数据通讯量与数据存取开销,以尽可能小的FPGA资源消耗量,支持任意规模的数据排序操作,大幅压缩了排序运算的耗时,从而降低了排序操作的运算成本并提升了其效率。
-
公开(公告)号:CN109407688B
公开(公告)日:2021-07-13
申请号:CN201811527023.2
申请日:2018-12-13
Applicant: 北京航天自动控制研究所 , 中国运载火箭技术研究院
IPC: G05D1/08
Abstract: 本发明涉及一种垂直起降火箭在线轨迹规划的质心运动解耦方法,本发明垂直起降重复使用火箭在线轨迹规划的质心运动解耦描述避免了在构建动力学方程过程中产生形如Tx2+Ty2+Tz2=T2的非线性等式,也可以将垂直起降重复使用火箭竖直Y方向、横纵X,Z方向的特性描述区分开,同时也可以将X,Y,Z三个方向的加速度ax,ay,az相关的等式与不等式约束分开描述,以及由加速度ax,ay,az所产生的变量的等式与不等式约束的分开描述,避免了在线轨迹规划中的锥约束,提升了计算效率,从而保证了在线轨迹规划算法中制导和姿控指令的合理性,保证了火箭在飞行过程中轨迹规划不会超出火箭本身的能力范围。
-
公开(公告)号:CN109407688A
公开(公告)日:2019-03-01
申请号:CN201811527023.2
申请日:2018-12-13
Applicant: 北京航天自动控制研究所 , 中国运载火箭技术研究院
IPC: G05D1/08
Abstract: 本发明涉及一种垂直起降火箭在线轨迹规划的质心运动解耦方法,本发明垂直起降重复使用火箭在线轨迹规划的质心运动解耦描述避免了在构建动力学方程过程中产生形如Tx2+Ty2+Tz2=T2的非线性等式,也可以将垂直起降重复使用火箭竖直Y方向、横纵X,Z方向的特性描述区分开,同时也可以将X,Y,Z三个方向的加速度ax,ay,az相关的等式与不等式约束分开描述,以及由加速度ax,ay,az所产生的变量的等式与不等式约束的分开描述,避免了在线轨迹规划中的锥约束,提升了计算效率,从而保证了在线轨迹规划算法中制导和姿控指令的合理性,保证了火箭在飞行过程中轨迹规划不会超出火箭本身的能力范围。
-
公开(公告)号:CN114167747B
公开(公告)日:2024-04-09
申请号:CN202111247260.5
申请日:2021-10-26
Applicant: 北京航天自动控制研究所
IPC: G05B17/02
Abstract: 本发明公开了一种飞行控制算法一体化训练平台的构建方法,属于机器学习技术领域,能够保证飞行控制算法训练,以及验证设计的通用性和易用性,进而提高了飞行控制算法一体化训练和验证设计的效率。方法包括:构建视景仿真模型;所述视景仿真模型展示飞行控制算法的一体化训练过程中的飞行状态信息;构建执行所述飞行控制算法的控制器与可视化飞行仿真环境之间数据交互的机器学习框架模块,并通过所述机器学习框架模块由所述可视化飞行仿真环境向所述控制器发送飞行状态信息,由所述控制器向所述可视化飞行仿真环境发送控制指令。
-
公开(公告)号:CN111597702B
公开(公告)日:2024-02-13
申请号:CN202010390797.6
申请日:2020-05-11
Applicant: 北京航天自动控制研究所
IPC: G06F30/20 , B64G1/24 , B64G1/62 , G06F119/14
Abstract: 一种火箭着陆轨迹规划方法及装置,包括:根据火箭发动机推力调节能力,计算着陆段采用最大推力和最小推力两种状态完成着陆的最大纵向速度‑高度剖面和最小纵向速度‑高度剖面;计算不同高度下所述最大纵向速度‑高度剖面和最小纵向速度‑高度剖面对应的速度平均值,进而得到可行域最大的纵向速度‑高度标准剖面;根据实际飞行高度变化趋势以及所述纵向速度‑高度标准剖面,最小化飞行过程期望纵向速度与实际纵向速度的偏差,构建可行域最大化的优化目标函数;根据所述优化目标函数规划火箭着陆轨迹。采用本申请中的方案,提升了在线规划的着陆轨迹对偏差的适应能力,有利于火箭安全着陆。
-
公开(公告)号:CN111176263B
公开(公告)日:2023-04-14
申请号:CN202010076043.3
申请日:2020-01-23
Applicant: 北京航天自动控制研究所
IPC: G05B23/02
Abstract: 本发明涉及一种基于BP神经网络的飞行器推力故障在线辨识方法,针对控制系统飞行运动信息进行数据融合生成,并训练BP神经网络,采用训练好的BP神经网络对主发动机故障进行辨识,能够有效实现对故障类型的实时准确建模判别。考虑飞行器质心运动、扰心运动、结构干扰、气动力及力矩等因素,建立更加真实可信仿真模型,生成可信的数据样本,对BP神经网络进行训练,本发明可对飞行器推力故障进行实时在线辨识,可准确辨识出哪台发动机故障,以及故障程度。本发明所需计算资源小,可嵌入现有飞行控制计算机,进行飞行过程中的故障实时辨识。发挥控制系统作用,掌握新的核心技术,解决非致命动力故障导致的飞行失利问题。
-
公开(公告)号:CN115906956A
公开(公告)日:2023-04-04
申请号:CN202211539304.6
申请日:2022-12-01
Applicant: 北京航天自动控制研究所
Inventor: 谢宇嘉 , 王晓峰 , 李悦 , 周辉 , 赵雄波 , 张辉 , 吴松龄 , 李晓敏 , 杨钧宇 , 路坤峰 , 张隽 , 丛龙剑 , 盖一帆 , 李山山 , 吴敏 , 林玉野 , 靳蕊溪
IPC: G06N3/0495 , G06N3/063 , G06F15/78
Abstract: 本公开涉及一种基于FPGA的神经网络模型轻量化方法,所述方法包括:步骤一、对需要计算的数据集进行预处理获得数据的最大值rmax、数据的最小值rmin、数据的均值m和方差σ2;步骤二、计算截断范围;步骤三、计算量化参数;计算量化所需参数量化步长s和量化零点z;步骤四、根据确定的参数进行量化计算。采用如上技术方案,将神经网络进行了适用于FPGA硬件的量化操作,减小了计算量,提高了计算效率。
-
公开(公告)号:CN114167748A
公开(公告)日:2022-03-11
申请号:CN202111247331.1
申请日:2021-10-26
Applicant: 北京航天自动控制研究所
IPC: G05B17/02
Abstract: 本发明公开了一种飞行控制算法一体化训练平台,属于机器学习技术领域,能够保证飞行控制算法训练,以及验证设计的通用性和易用性,进而提高了飞行控制算法一体化训练和验证设计的效率。平台包括:控制器、机器学习框架模块和可视化飞行仿真环境;其中:所述可视化飞行仿真环境包括动力学模型、视景仿真模型和调用接口;所述可视化飞行仿真环境通过所述调用接口与所述机器学习框架模块相连接;所述机器学习框架模块用于实现所述控制器和所述可视化飞行仿真环境之间的数据交互;所述视景仿真模型用于展示飞行控制算法的一体化训练过程中的飞行状态信息;所述动力学模型与所述视景仿真模型之间建立通讯连接。
-
公开(公告)号:CN114167747A
公开(公告)日:2022-03-11
申请号:CN202111247260.5
申请日:2021-10-26
Applicant: 北京航天自动控制研究所
IPC: G05B17/02
Abstract: 本发明公开了一种飞行控制算法一体化训练平台的构建方法,属于机器学习技术领域,能够保证飞行控制算法训练,以及验证设计的通用性和易用性,进而提高了飞行控制算法一体化训练和验证设计的效率。方法包括:构建视景仿真模型;所述视景仿真模型展示飞行控制算法的一体化训练过程中的飞行状态信息;构建执行所述飞行控制算法的控制器与可视化飞行仿真环境之间数据交互的机器学习框架模块,并通过所述机器学习框架模块由所述可视化飞行仿真环境向所述控制器发送飞行状态信息,由所述控制器向所述可视化飞行仿真环境发送控制指令。
-
公开(公告)号:CN120046653A
公开(公告)日:2025-05-27
申请号:CN202411917060.X
申请日:2024-12-24
Applicant: 北京航天自动控制研究所
IPC: G06N3/0442 , G06N3/092
Abstract: 本发明公开了一种神经网络控制律高效自主学习方法。针对在运用深度强化学习算法实现复杂飞行器控制律自学习的过程中,超参数设定高度依赖于人工经验进而造成设计难度大,且不一定对于任务最优的问题,本发明引入图像识别领域网络架构搜索思想,提出基于神经网络架构轻量化搜索策略的飞行器控制律自学习方法。该方法在将神经网络架构设计问题转化为图拓扑生成问题的基础上,结合LSTM循环神经网络的图拓扑生成算法、基于权重共享的深度强化学习参数轻量化训练与评估机制,以及基于策略梯度的图拓扑生成器参数学习算法,实现了深度强化学习训练算法中神经网络架构超参数的自动优化,进而完成了控制律的自学习。
-
-
-
-
-
-
-
-
-