Abstract:
A linear gauge includes a contact member having a lower tip to be positioned facing a workpiece; an air slider including a cylinder surrounding the contact member with a clearance left between them, and configured to eject air such that the contact member is supported movably in a vertical direction; a scale that detects a height position of the contact member; a casing accommodating therein the contact member, the air slider, and the scale; an evacuation portion formed in an upper portion of the cylinder such that the ejected air is evacuated into the casing; and a communication channel communicating an inlet, which is formed in an upper portion of the contact member, and an outlet, which is formed in the lower tip of the contact member, with each other inside the contact member.
Abstract:
A flow rate control device (100) comprises: a pressure control valve (6) provided in a flow path; a flow rate control valve (8) provided downstream side of the pressure control valve; and a first pressure sensor (3) for measuring pressure on the downstream side of the pressure control valve and on the upstream side of the flow rate control valve. The flow rate control valve has a valve element (13) seated on/separated from a valve seat (12); a piezoelectric element (10b) for moving the valve element so as be seated on/separated from the valve seat; and a strain sensor (20) provided on a side surface of the piezoelectric element. The pressure control valve (6) is configured to control the pressure control valve (6) on the basis of a signal output from the first pressure sensor (3), and to control the driving of the piezoelectric element of the flow rate control valve (8) based on a signal output from the strain sensor (20).
Abstract:
The present disclosure is directed towards electro-fluid transducers that may influence the flow of a fluid in and around a channel. In one such embodiment, a system comprises a first electrode at least partially encapsulated by a first dielectric; a second electrode at least partially encapsulated by a second dielectric, wherein a portion of a channel exists between the first dielectric and the second dielectric; a third electrode positioned in the channel; and a fourth electrode positioned in the channel, wherein the electrodes influence a flow of a fluid in the channel upon the electrodes being energized.
Abstract:
Electronic-fluidic hybrid form dividers, constructed by a simple planer droplet generation structure, a pair of signal electrodes, and a responsive control valve, which is programmed to respond to only certain signal droplets, by a basic electronic principle: change of voltage share between impedances. Detected fluidic information is addressed in both electronic and fluidic forms, and the fluidic pathway is well-confined in a simple planar structure, although its control valve is in a second layer, thereby minimizing any fluidic disturbance. Various configurations comprise a plurality of identical structures, which can alter their cumulative function by re-assignment of required voltage share. The hybrid divider can be assembled into a fluidic universal logic gate, of a simple two inlet and one outlet signal channels structure, and switch between sixteen functions by re-assigning voltage share.
Abstract:
A microfluidic dispensing system may include multiple supply lines for simultaneous filling of diaphragm pumps associated with each supply line. Each supply line may fill corresponding groups of diaphragm pumps with a corresponding ingredient to a supply reservoir for the supply line. Accordingly, different groups of diaphragm pumps corresponding to different supply lines may be filled with corresponding ingredients simultaneously. Those ingredients corresponding to the different groups of diaphragm pumps may also be dispensed simultaneously, giving rise to a faster and more efficient fluidic dispensing system.
Abstract:
Provided is a microfluidic device. The microfluidic device includes a sample chamber in which a sample is accommodated. The sample chamber includes: an introduction portion including a loading hole through which the sample is loaded; an accommodation portion including a discharge hole; and a neck portion forming a boundary between the introduction portion and the accommodation portion. The neck portion provides a capillary pressure for controlling flow of the sample between the introduction portion and the accommodation portion.
Abstract:
A meter for flowing material, e.g., water, has a meter register having an electronic display, e.g., an LED or LCD display, and a mechanical read-out display driven by a stepper motor to record units of water that flowed through the meter. In the event of an electrical power failure, the LED or LCD readout values are lost, however, the mechanical read-out values remain. Further, signals are transmitted to a microprocessor of a meter register to change the rotation of the stepper motor so that the meter register can be used with different types of meters. Still further, a meter generator co-acting with a meter register forwards an electrical pulse signal after a quantity of material or utility passes through a water meter to a microprocessor of a remote reader. The remote reader includes an odometer coupled to a stepper motor.
Abstract:
A fluid pathway is provided with a flow controller in at least a portion of its length wherein the flow controller comprises an active surface capable of influencing the fluid flow through the fluid pathway, the configuration of the active surface conforming to at least one logarithmic curve conforming to the Golden Section.
Abstract:
An apparatus for axially transferring fluid may comprise an elongated shaft defining a first fluid passageway axially therethrough and a second fluid passageway from an outer surface thereof to the first fluid passageway. An elongated tube member defines an outer surface that is received within the first fluid passageway and a third fluid passageway axially therethrough. A plurality of axial channels are defined between the tube member and the first fluid passageway or along the tube member separately from the third fluid passageway. At least one of the plurality of axial channels define a first opening near one end thereof that receives fluid from a source of fluid and a second opening axially spaced apart from the first opening and that aligns with the second fluid passageway such that fluid may be transferred by the at least one fluid passageway from the source of fluid through the second fluid passageway.
Abstract:
The advanced modified high performance synthetic jet actuator with optimized curvature shape chamber (ASJA-M) is a synthetic jet actuator (SJA) with a lower volume reservoir or chamber. A curved chamber is used, instead of the conventional cylinder chamber, to reduce the dead volume of the jet chamber and increase the efficiency of the synthetic jet actuator. The shape of the curvature corresponds to the maximum displacement (deformation) profile of the electroactive diaphragm. The jet velocity and mass flow rate for the ASJA-M will be several times higher than conventional piezoelectric actuators.