Abstract:
A fluidic device comprises a first channel conduit, a valve apparatus, and an additional element adjacent to the first channel conduit. The first channel conduit transports fluid from a first fluid entrance to a fluid exit. In one embodiment, the additional element is a pump chamber that receives fluid from a second fluid entrance and pumps fluid into the first channel conduit in accordance with fluid pressure. Alternatively, the additional elements include a second channel conduit and a neck of the first channel conduit. The first channel conduit and the second channel conduit share a common wall. Fluid pressure in the first channel conduit controls a valve apparatus. The value apparatus controls a rate of fluid flow in the first channel conduit by deforming the common wall to change a cross-sectional area of the neck, which changes a rate of fluid flow in the second channel conduit.
Abstract:
Embodiments of apparatus for controlling the movement of matter, including but not limited to one-way fluid valves, are disclosed. The apparatus may include a transition nozzle, a funnel nozzle, and a reverse flow blocker arranged in series in a case. A counter-flow area may be disposed about the funnel nozzle. The apparatus may permit matter to flow in a first direction, and discourage or prevent flow in a direction reverse to the first direction. Control over the flow of matter may also enable the matter to be harvested, sorted, separated or combined with injected matter.
Abstract:
A microdevice structure of microchannel chip is provided which includes one gas channel and at least one liquid channel. The microchannel connects the gas channel and each liquid channel. The most basic microdevice of the mirochannel chip comprises micropressure sensor, microvalve, micropiston and micropump which are controlled by digital pressure gas microcircuit in the chip. Each microdevice isolates the gas phase and liquid phase by microhole without any movable component and any special ventilate or elastic material. The gas-liquid interface is driven by the pressure difference of gas phase and liquid phase to enable the microdevice to implement the functions, such as sensing pressure, switching fluid channel, transporting liquid effectively, and so on. All kinds of microdevices can be shaped on the hard material (for example glass) by etching, so as to integrate a great lot microdevices with low cost, and the structure of chip and these several microdevices can be formed by adopting other methods on other material.
Abstract:
The present invention relates to microfluidic devices that comprise a 3-D microfluidic network of microchannels of arbitrary complexity and to a method for fabricating such devices. In particular, the invention relates to a method of forming microfluidic devices having 3-D microfluidic networks that contain open or closed loop microchannels using a single-step molding process without the need for layer-by-layer fabrication, and to the resultant microfluidic devices. The networks of such microfluidic devices may comprise one or more microchannel circuits which may be discrete or interconnected.
Abstract:
In a method for initialization of a microfluidic device including a first substrate including a microfluidic channel disposed therein, a valve seat disposed in a microfluidic channel and protruding from the first substrate, and a second substrate disposed opposite to the first substrate and including a space formed therein and corresponding to the valve seat, and a polymer film disposed between the first and second substrates, the method includes separating the polymer film from a surface of the valve seat by applying a positive pressure into the microfluidic channel of the first substrate and applying a negative pressure into the space of the second substrate.
Abstract:
An integrated microfluidic check valve has a first chamber having inlet and outlet ports and divided by a barrier the said inlet and outlet ports into first and second subchambers. A membrane forms a wall of the first chamber and co-operates with the barrier to selectively permit and prevent fluid flow between the inlet and outlet ports. A second chamber adjoining the first chamber and has a wall formed by the membrane. A microfluidic channel establishes fluid communication between the second chamber and the first subchamber. The membrane deflects to permit fluid flow around the barrier when the pressure in the first subchamber is lower than the pressure in the second subchamber. Two such valves can be combined into a peristaltic pump.
Abstract:
A gas burner apparatus for discharging a mixture of fuel gas, air and flue gas into a furnace space of a furnace wherein the mixture is burned and flue gas having a low content of nitrous oxides and carbon monoxide is formed is provided. The burner tile includes at least one gas circulation port extending though the wall of the tile. The interior surface of the wall of the tile includes a Coanda surface. Fuel gas and/or flue gas conducted through the gas circulation port follows the path of the Coanda surface which allows more flue gas to be introduced into the stream. The exterior surface of the wall of the tile also includes a Coanda surface for facilitating the creation of a staged combustion zone. Also provided are improved burner tiles, improved gas tips and methods of burning a mixture of air, fuel gas and flue gas in a furnace space.
Abstract:
Using basic physical arguments, a design and method for the fabrication of microfluidic valves using multilayer soft lithography is presented. Embodiments of valves in accordance with the present invention feature elastomer membrane portions of substantially constant thickness, allowing the membranes to experience similar resistance to an applied pressure across their entire width. Such on-off valves fabricated with upwardly- or downwardly-deflectable membranes can have extremely low actuation pressures, and can be used to implement active functions such as pumps and mixers in integrated microfluidic chips. Valve performance was characterized by measuring both the actuation pressure and flow resistance over a wide range of design parameters, and comparing them to both finite element simulations and alternative valve geometries.
Abstract:
In a capillary pump unit, a capillary pump including a plurality of through portions making a first point and a second point of an approximately flat-plate-shaped base communicable with each other are formed in the base, and a sample liquid is transferred from the first point to the second point by capillary force by the through portions.
Abstract:
The present teachings relate to surface tension controlled valves used for handling biological fluids. The valves controlled by optically actuating an electro-wetting circuit.