Abstract:
An embodiment of the invention is directed to an electronic caliper which combines positioning and measurement in one unit without the use of hydraulics for subsea use. In certain embodiments, several attachments can be affixed to accommodate a range of measurement tasks. In a preferred embodiment, one jaw is adjustable and the other, or opposing, jaw is fixed, e.g. by bolting it on to a mounting structure. The jaws typically allow for the removal and replacement of other attachments. In another embodiment, the unit communicates to computer software for position control, precise indication and clamping for adjustment. In a preferred embodiment, computer software displays all feedback via laptop computer on surface. The caliper is maneuvered to a position proximate an object and used to measure a predetermined physical characteristic of the object. The measurement can be displayed, e.g. at the surface, using a computer with control software.
Abstract:
A method for calculating optimal length of trace between adjoining bends is disclosed. First, a rising time Tr of signal of a trace is defined, and a unit transmitting delay TD of the trace and a transmitting delay Td3 of bend in the trace are calculated. A transmitting delay Td2 of a trace segment between the adjoining bends in the trace is calculated with Tr and Td3. Finally, an equation L2=Td2/TD is calculated for obtaining the optimal length L2 of the trace between a first bend and a second bend.
Abstract:
A micropattern measuring method disclosed herein includes acquiring an image of a micropattern including plural layers; extracting a rough outline of the micropattern in the image as a sequence of points including plural points; dividing the plural points composing the sequence of points into groups; making each of the groups as each of patterns belong to any of the plural layers; and acquiring edge coordinates of a pattern to be measured from the patterns which are made to belong to the respective layers.
Abstract:
The present invention relates to a measuring and testing device incorporating an air gauge capable of measuring dimensional characteristics of a tapered bore of a component. The measuring and testing device has an actuator for moving the air gauge or the component relative to the other so that the measuring and testing device are capable of utilization in an inline process for manufacturing the component.
Abstract:
Two scales having unequal pitches are used to measure lengths with a greater resolution than that offered by an image capturing system operating alone. In an embodiment, the different pitches are attained by having bands of unequal width in the two scales. Images representing the overlapping patterns of the two bands are captured in a digital format before and after a move. The bit patterns resulting from such capturing are examined to determine the length of the move with a high resolution according to Vernier principles. The length of the move can in turn be used to measure the length of an object with high resolution.
Abstract:
The arrangement of this invention for measuring the dimensions of a workpiece (14) includes a circuit in which a fluid circulates. Such circuit comprises a first branch (15) provided with an inlet nozzle (16) and at least one measuring nozzle (17) directed towards the workpiece the dimensions of which are to be measured, and a second branch (19) provided with an inlet nozzle (20) and opening into an output reference nozzle (21). A pressure transducer (22) furnishes an electrical signal representing the pressure difference in the two branches. The arrangement is original inasmuch as the fluid employed is a liquid and that the inlet nozzles are arranged to deliver a liquid flow at their output producing a minimum of noise on the electrical signal issuing from the pressure transducer. Utilization is for in-process measurement of cylindrical bores or outer diameters of cylindrical workpieces or indeed of planar surfaces.
Abstract:
A lithography tool having an improved focus system. The focus system comprises a lens mounted in a nosepiece which defines a chamber. The chamber defines an onifice through which the lens system may see a workpiece. An air supply is provided to supply a regulated and measured air flow to the chamber. By measuring the air flow into the chamber, the rate of air flow through the orifice may be determined. The rate of air flow through the orifice is proportional to the gap between the orifice and a workpiece.
Abstract:
A pressure operated detecting apparatus for providing highly sensitive on-off and distance measuring signals. The apparatus comprises an air bridge circuit which includes a semiconductor chip utilizing the piezo-resistance effect. The chip is exposed at opposite sides to a reference air pressure and a subject air pressure which is variable in response to an approaching object. The chip produces an output voltage in response to the difference in pressure which is amplified and converted to an analog signal which is usable for distance measuring. The analog signal is also compared to a reference voltage in a comparator which generates an on-off binary signal.
Abstract:
Apparatus for indicating the change in position of a travelling block coupled to a wire line which is wrapped around a drum, comprising a motion pickup device responsive to the drum for providing a first shaft output having a fixed relationship to the rotation of the drum, an infinitely adjustable drive unit responsive to the first shaft output for providing a second shaft output having an adjustable relationship to the rotation of the drum, a pneumatic logic circuit responsive to the second shaft output for providing pulses that approximately coincide with each foot and each five-foot multiple of travelling block movement, and an output unit for displaying the foot and five-foot pulses. Calibration of the apparatus is accomplished by adjusting the drive unit to provide an average of the correct rate of travelling block movement relative to rotary motion of the drum.
Abstract:
An apparatus for continuously monitoring clearances between a moving and a stationary machine part, utilizing compressible fluid flow. A measuring nozzle is disposed in the clearance space, and a conduit connects said nozzle with a space having a compressible fluid pressure different from the pressure in the clearance space. A measuring orifice is disposed along the conduit path. First and second comparison nozzles are situated in a pressure chamber and coupled through conduits to the same pressure space as that to which the conduit of the measuring nozzle is coupled. Measuring orifices are also situated in the conduits coupled to the comparison nozzles. Differential pressure meters are coupled between the conduit of the measuring nozzle and a conduit of one of the comparison nozzles; and between the conduits of the two comparison nozzles. The readings of the differential pressure meters are functions of both pressure variations in the clearance space and the clearance dimension, and the clearance dimension can be determined by processing the meter readings.