Abstract:
Variable flow resistance systems can be used to regulate fluid flow in various applications, particularly within a subterranean formation. A variable flow resistance system can comprise a chamber configured to induce rotational motion of a fluid flowing therethrough, a fluid inlet coupled to the chamber, and a fluid outlet coupled to the chamber that allows the fluid to exit through at least a sidewall of the chamber. If desired, a plurality of the chambers can be connected in series fluid flow communication with one another.
Abstract:
A fluid discrimination system can include a fluid discriminator which selects through which of multiple outlet flow paths a fluid composition flows, the selection being based on a direction of flow of the fluid composition through the discriminator, and the direction being dependent on a fluid type in the fluid composition. Another fluid discriminator can include a structure which displaces in response to a fluid composition flow, whereby an outlet flow path of the fluid composition changes in response to a change in a ratio of fluids in the fluid composition. A method of discriminating between fluids can include providing a fluid discriminator which selects through which of multiple outlet flow paths a fluid composition flows in the well, the selection being based on a direction of flow of the fluid composition through the discriminator, and the direction being dependent on a ratio of the fluids in the fluid composition.
Abstract:
A fluid pathway is provided with a flow controller in at least a portion of its length wherein the flow controller comprises an active surface capable of influencing the fluid flow through the fluid pathway, the configuration of the active surface conforming to at least one logarithmic curve conforming to the Golden Section.
Abstract:
A choke assembly comprises an inlet (48) for a multiphase fluid stream, the stream comprising a first relatively heavy fluid phase and a second relatively light fluid phase; a first fluid outlet (116); a choke element (22) disposed between the inlet and the first fluid outlet operable to control the flow of fluid between the inlet and the first fluid outlet; a separation chamber (40, 114) disposed to provide separation of phases in the fluid stream upstream of the choke element; and a second outlet (118) for removing fluid from the separation cavity. The choke assembly is of particular use in the control of fluid streams produced from a subterranean well, in particular oil and gas produced from a subsea well.
Abstract:
A system for variably resisting flow of a fluid composition can include a flow passage and a set of one or more branch passages which intersect the flow passage, whereby a proportion of the composition diverted from the passage to the set of branch passages varies based on at least one of a) viscosity of the fluid composition, and b) velocity of the fluid composition in the flow passage. Another variable flow resistance system can include a flow path selection device that selects which of multiple flow paths a majority of fluid flows through from the device, based on a ratio of desired fluid to undesired fluid in the composition. Yet another variable flow resistance system can include a flow chamber, with a majority of the composition entering the chamber in a direction which changes based on a ratio of desired fluid to undesired fluid in the composition.
Abstract:
A variable flow resistance system can include a vortex device, with resistance to flow of a fluid composition through the vortex device being dependent on a rotation of the fluid composition at an inlet to the vortex device. Another system can include a second vortex device which receives a fluid composition from an outlet of a first vortex device, a resistance to flow of the fluid composition through the second vortex device being dependent on a rotation of the fluid composition at the outlet. Another system can include a first vortex device which causes increased rotation of a fluid composition at an outlet thereof in response to an increase the fluid composition velocity, and a second vortex device which receives the fluid composition from the outlet, a flow resistance through the second vortex device being dependent on the rotation of the fluid composition at the outlet.
Abstract:
A system for variably resisting flow of a fluid composition can include a flow passage and a set of one or more branch passages which intersect the flow passage, whereby a proportion of the composition diverted from the passage to the set of branch passages varies based on at least one of a) viscosity of the fluid composition, and b) velocity of the fluid composition in the flow passage. Another variable flow resistance system can include a flow path selection device that selects which of multiple flow paths a majority of fluid flows through from the device, based on a ratio of desired fluid to undesired fluid in the composition. Yet another variable flow resistance system can include a flow chamber, with a majority of the composition entering the chamber in a direction which changes based on a ratio of desired fluid to undesired fluid in the composition.
Abstract:
A vortex-controlled variable flow resistance device ideal for use in a backpressure tool for advancing drill string in extended reach downhole operations. The characteristics of the pressure waves generated by the device are controlled by the growth and decay of vortices in the vortex chamber(s) of a flow path. The flow path includes a switch, such as a bi-stable fluidic switch, for reversing the direction of the flow in the vortex chamber. The flow path may include multiple vortex chambers, and the device may include multiple flow paths. A hardened insert in the outlet of the vortex chamber resists erosion. This device generates backpressures of short duration and slower frequencies approaching the resonant frequency of the drill string, which maximizes axial motion in the drill sting and weight on the bit. Additionally, fluid pulses produced by the tool enhance debris removal ahead of the bit.
Abstract:
A vortex-controlled variable flow resistance device ideal for use in a backpressure tool for advancing drill string in extended reach downhole operations. The characteristics of the pressure waves generated by the device are controlled by the growth and decay of vortices in the vortex chamber(s) of a flow path. The flow path includes a switch, such as a bi-stable fluidic switch, for reversing the direction of the flow in the vortex chamber. The flow path may include multiple vortex chambers, and the device may include multiple flow paths. A hardened insert in the outlet of the vortex chamber resists erosion. This device generates backpressures of short duration and slower frequencies approaching the resonant frequency of the drill string, which maximizes axial motion in the drill sting and weight on the bit. Additionally, fluid pulses produced by the tool enhance debris removal ahead of the bit.
Abstract:
Embodiments of a vortice-amplified diffuser section for use in a buoyancy dissipater are generally described herein. The vortice-amplified diffuser section may include a plurality of diffusion ports to diffuse an expanding gas, a reduction sleeve to adjust an amount of diffusion flow, and vortex generators within at least some of the diffusion ports to generate vortices. The reduction sleeve may be configurable to block off some of the diffusion ports. The vortex generators may generate vortices of gas bubbles in the water to reduce the water's buoyancy and to inhibit movement or disrupt the operations of an errant vessel. The reduction sleeve may be used to control the size, shape, and intensity of the expanding gas bubble or bubble plume as well as to control the lethality level of the buoyancy reduction.