Abstract:
A family of semiconductor devices is formed in a substrate that contains no epitaxial layer. In one embodiment the family includes a 5V CMOS pair, a 12V CMOS pair, a 5V NPN, a 5V PNP, several forms of a lateral trench MOSFET, and a 30V lateral N-channel DMOS. Each of the devices is extremely compact, both laterally and vertically, and can be fully isolated from all other devices in the substrate.
Abstract:
The present invention relates to a semiconductor device arranged at a surface of a semiconductor substrate having an initial doping having an electrical connection comprising at least one plug made of a material with a high conductivity, especially a material other than the substrate, especially a metal plug, between said initially doped substrate and said surface of the substrate. The device has at least one ground connection arranged to be connected to a ground pin on a package. The ground connection is arranged to be connected to said ground pin using said electrical connection, where the initially doped substrate is arranged to be connected to said ground pin via a reverse side of the substrate, opposite said surface, and thereby being arranged to establish a connection between said ground connection and said ground pin.
Abstract:
The invention includes methods of fabricating a bipolar transistor that adds a silicon germanium (SiGe) layer or a third insulator layer of, e.g., high pressure oxide (HIPOX), atop an emitter cap adjacent the intrinsic base prior to forming a link-up layer. This addition allows for removal of the link-up layer using wet etch chemistries to remove the excess SiGe or third insulator layer formed atop the emitter cap without using oxidation. In this case, an oxide section (formed by deposition of an oxide or segregation of the above-mentioned HIPOX layer) and nitride spacer can be used to form the emitter-base isolation. The invention results in lower thermal cycle, lower stress levels, and more control over the emitter cap layer thickness, which are drawbacks of the first embodiment. The invention also includes the resulting bipolar transistor structure.
Abstract:
Semiconductor devices having a reduced parasitic capacitance while having a maximum acceptable current similar to those of prior devices, and a method of manufacturing thereof are disclosed. The inventive device has a hole at the bottom of which an insulating film separated from the hole walls is located, a semiconductor film being present in the hole, which is connected to the semiconductor substrate adjacent to the insulating film and a conductor film constituting a portion of the hole wall, and extends onto the insulating film so as to cover at least part of the film.
Abstract:
The present invention is generally directed to bipolar transistors with geometry optimized for device performance and various methods of making same. In one illustrative embodiment, the device includes a substrate, an intrinsic base region formed in the substrate, a continuous emitter region formed within the intrinsic base region, the emitter region having a plurality of substantially hexagonal shaped openings defined therein, and a plurality of extrinsic base regions formed in the substrate, wherein each of the extrinsic base regions is positioned within an area defined by one of the plurality of substantially hexagonal shaped openings.
Abstract:
An integrated circuit (10) includes a thermal sensing device (20) and a power-switching device (12) such as an IGBT. The power device (12) is fabricated in a conventional manner on a semiconductor substrate, and the thermal sensing device (20) is fabricated on an electrical insulation layer (74) formed over the substrate. The thermal sensing device (20) may be provided in the form of a number of series-connected polysilicon diodes (D1-D3) positioned adjacent to the power device (12) such that the operating temperature of the thermal sensing device (20) is near that of the power device (12). In response to an input current IC, the thermal sensing device (20) produces an output voltage (VD) that is substantially linear with surface die temperature, and which reacts rapidly to changes in surface die temperature. The thermal sensing device (20) is completely electrically isolated from the power device, thereby eliminating any electrical interaction therebetween.
Abstract translation:集成电路(10)包括热感测装置(20)和诸如IGBT的功率开关装置(12)。 功率器件(12)以常规方式制造在半导体衬底上,并且热感测器件(20)制造在形成在衬底上的电绝缘层(74)上。 热感测装置(20)可以以邻近功率装置(12)定位的多个串联多晶硅二极管(D 1 -D 3)的形式提供,使得热感测装置(20)的工作温度 )接近功率器件(12)的功率器件。 响应于输入电流I C C,热感测装置(20)产生与表面模头温度基本上线性的输出电压(V SUB D),并且其响应于 迅速改变表面模头温度。 热感测装置(20)与动力装置完全电绝缘,从而消除它们之间的任何电气相互作用。
Abstract:
A high-frequency bipolar transistor structure includes a base region of a first conductivity type formed in a silicon layer of a second conductivity type, the base region comprising an intrinsic base region surrounded by an extrinsic base region, an emitter region of the second conductivity type formed inside the intrinsic base region, the extrinsic base region and the emitter region being contacted by a first polysilicon layer and a second polysilicon layer respectively. The first and the second polysilicon layers are respectively contacted by a base metal electrode and an emitter metal electrode. Between the extrinsic base region and the first polysilicon layer, a silicide layer is provided to reduce the extrinsic base resistance of the bipolar transistor.