Abstract:
Embodiments of the present disclosure present a valve assembly that includes a valve body having a gas passage bore, a valving bore extending along a longitudinal axis and intersecting the gas passage bore, a first bearing surface concentric with the longitudinal axis and a radially spaced apart second bearing surface concentric with the longitudinal axis, wherein an interface of the gas passage bore and the valving bore defines a flow port radially intermediate the first bearing surface and the second bearing surface. The valve assembly further includes a shaft valve extending along the longitudinal axis and rotatably mounted in the valving bore.
Abstract:
Methods and systems are provided for operating a split exhaust engine system that provides blowthrough air and exhaust gas recirculation to an intake passage via a first exhaust manifold and exhaust gas to an exhaust passage via a second exhaust manifold. In one example, an intake valve timing, exhaust valve timing of a first set of exhaust valves coupled to the first exhaust manifold, and a position of an exhaust gas recirculation (EGR) valve in an EGR passage may be adjusted in coordination with one another in response to a condition at a compressor. The EGR passage may be coupled between the intake passage, upstream of the compressor, and the first exhaust manifold.
Abstract:
The present invention relates to an oil tank ventilation device for a hydraulic brake unit of a tramcar, comprising a vent plug, a sealing ring, a gas guide hole and a gas guide pipe; the gas guide hole is a through-hole structure arranged at an upper end inside an integrated valve block; the communications of electrical element protection case, integrated valve block and the oil tank are realized by the gas guide pipe stretched into an air chamber of the oil tank and by the vent plug configured in the electrical element protection case. When the surface of the oil tank is covered with ice or snow, the rain or snow can be effectively prevent from falling on the vent plug body and the driving safety of the train is ensured.
Abstract:
An engine system for controlling flow of exhaust gas may include an intake line to receive external air, an engine including a combustion chamber to combust the external air and a fuel supplied through the intake line, to generate driving torque, an exhaust line to exhaust the exhaust gas combusted in the combustion chamber of the engine, a turbocharger including a turbine operated according to exhaust gas flowing through the exhaust line and a compressor to compress the external air flowing through the intake line, a catalyst device to reduce a harmful component included in the exhaust gas passing through the turbine of the turbocharger, a bypass line branched from the exhaust line between the combustion chamber and the turbine and converged in the intake line between the compressor and the combustion chamber, and a bypass valve disposed in the bypass line to selectively open/close the bypass line.
Abstract:
The invention has an object to control an EGR amount accurately in transient time. An ECU switches EGR control to the one-valve EGR control and the both-valve EGR control based on a request EGR amount. When the EGR control is switched to the one-valve EGR control from the both-valve EGR control, an EGR valve of one bank is closed first. Next, during a time period until an opening degree restriction time period elapses after the EGR valve is closed, an opening degree of an EGR valve of the other bank is restricted to be smaller than a one-valve target opening degree. Subsequently, when the opening degree restriction time period elapses, restriction of the opening degree of the EGR valve is cancelled, and the opening degree of the EGR valve is changes to the one-valve target opening degree.
Abstract:
A dual path exhaust gas recirculation (EGR) system for an engine includes a common EGR intake path and first and second low pressure EGR paths including respective first and second EGR valves. The common EGR intake path is connected to the exhaust system downstream of a catalyst and includes an EGR cooler. The first EGR path is coupled directly to the EGR cooler and an inlet of a turbocompressor. The second EGR path is coupled directly to the EGR cooler and the intake system, thereby bypassing the turbocharger and an engine throttle valve. The engine includes an absence of any high pressure EGR path and the EGR valves are controlled such that the first EGR valve is closed and the second EGR valve is open at low engine speed and load operating conditions thereby providing EGR directly to the intake system that bypasses the turbocharger and throttle valve.
Abstract:
A dual core exhaust gas recirculation cooler includes a cooler housing having an EGR inlet, first and second EGR outlets, a cooling circuit extending from a coolant inlet through the cooler housing to a coolant outlet, a first EGR circuit core extending from the EGR inlet to the first EGR outlet, and a second EGR circuit core extending to the second EGR outlet from the EGR inlet or the first EGR outlet. A first EGR valve is configured to selectively couple the first EGR circuit core to a return passageway. A second EGR valve is configured to selectively couple the second EGR circuit core to the return passageway. The EGR valves are configured to selectively flow exhaust gas through the cooler housing within either the first EGR circuit core only or within both the first EGR circuit core and the second EGR circuit core.
Abstract:
An exhaust gas recirculation (EGR) mixer for use in a power generation system is provided. The EGR mixer includes a mixing chamber defining a flow direction and a working fluid inlet coupled with the mixing chamber for introducing a working fluid into the mixing chamber along the flow direction. The EGR mixer also includes exhaust gas injection ducts extending across the mixing chamber downstream from the working fluid inlet. Each of the exhaust gas injection ducts is oriented to receive exhaust gases being recirculated within the power generation system and to inject the exhaust gases into the mixing chamber in a direction that intersects the flow direction to generate a turbulent flow within the mixing chamber. The EGR mixer also includes an outlet coupled with the mixing chamber for directing a mixture of the exhaust gases and the working fluid to a compressor within the power generation system.
Abstract:
Disclosed are two system devices for stratified injecting the recirculated exhaust gas and high-specific-heat-capacity or inert gas for clean combustion of an internal combustion engine. The former is composed of an exhaust gas recirculation system, an injection system, and a power system. The latter is composed of four parts, and a high-specific-heat-capacity gas or inert gas channel is added. Injectors can be arranged at any position in the cylinder between a top dead center and a bottom dead center of a piston in a cylinder; 1-3 layers of injectors can be arranged; and 2-6 injectors can be arranged on each layer. Gas participating in combustion enters the cylinder from two intake channels, namely, a scavenging port of the internal combustion engine and the injectors; an in-cylinder swirl ratio can be remarkably increased through kinetic energy carried by the gas; and fuel-gas mixing is promoted, and the combustion rate is increased.
Abstract:
Embodiments of the present disclosure present a valve assembly that includes a valve body having a gas passage bore, a valving bore extending along a longitudinal axis and intersecting the gas passage bore, a first bearing surface concentric with the longitudinal axis and a radially spaced apart second bearing surface concentric with the longitudinal axis, wherein an interface of the gas passage bore and the valving bore defines a flow port radially intermediate the first bearing surface and the second bearing surface. The valve assembly further includes a shaft valve extending along the longitudinal axis and rotatably mounted in the valving bore.