Abstract:
Disclosed are nanocomposite-based biosensors. The biosensors include an electrode, a nanocomposite over the surface of the electrode, the nanocomposite comprising a population of carbon nanotubes and a population of magnetic nanoparticles dispersed in the population of carbon nanotubes, wherein the magnetic nanoparticles comprise a ferromagnetic metal or compound thereof, and one or more biomolecules over the surface of the electrode, wherein the biomolecules are capable of undergoing a redox reaction with a target molecule. Also disclosed are nanocomposites, modified electrodes, kits, and methods for using the biosensors.
Abstract:
A carbon nanohorn (CNH) is oxidized to make an opening in the side of the CNH. A substance to be included, e.g., a metal, is introduced through the opening. The inclusion substance is moved to a tip part of the carbon nanohorn through heat treatment in vacuum or an inert gas. The CNH is further heat treated in an atmosphere containing oxygen in a low concentration to remove the carbon layer in the tip through catalysis of the inclusion substance. This exposes the inclusion substance. If the inclusion substance is a metal which is not moved to a tip part by the heat treatment in vacuum or an inert gas, the carbon part surrounding the fine catalyst particle is specifically burned by a heat treatment in an low oxygen concentration atmosphere, while utilizing the catalysis. Thus, the fine catalyst particle is fixed to the tip part of the CNH.
Abstract:
The present invention is related to a biochip and a biomolecular detection system using the same. In particular, the biomolecular detection system is capable of detecting biological molecules (biomolecules) such as DNA or protein at a high speed. The biochip comprises a supporting structure, conductive materials aligned vertically on, and associated with, the supporting structure, and biomolecule probes operably linked to the conductive materials. The biomolecular detection system using the biochip may precisely detect biomolecules as well as the density of the biomolecules.
Abstract:
A nanoengineered membrane for controlling material transport (e.g., molecular transport) is disclosed. The membrane includes a substrate, a cover defining a material transport channel between the substrate and the cover, and a plurality of fibers positioned in the channel and connected to and extending away from a surface of the substrate. The fibers are aligned perpendicular to the surface of the substrate, and have a width of 100 nanometers or less. The diffusion limits for material transport are controlled by the separation of the fibers. In one embodiment, chemical derivatization of carbon fibers may be undertaken to further affect the diffusion limits or affect selective permeability or facilitated transport. For example, a coating can be applied to at least a portion of the fibers. In another embodiment, individually addressable carbon nanofibers can be integrated with the membrane to provide an electrical driving force for material transport.
Abstract:
Method for the attachment and/or crystallization of macromolecules, chemical reagents used in the said method, products obtained as well as applications of the said products in the field of materials and of structural biology, in particular as biosensors or as biomaterials. The said method comprises essentially the incubation, without stirring, for at least 15 minutes, of a biological macromolecule in solution with nanotubes of carbon closed at their ends, under suitable temperature and pH conditions.
Abstract:
An absorbent article, at least a portion of which comprises a skin care composition that comprises an enzyme inhibitor and is at least partially transferred from the article to the skin of a wearer of the article as a result of normal contact, wearer motion and/or body heat. The enzyme inhibitor is transferred to the skin with the skin care composition and is available at the skin/urine and skin/feces interfaces to inhibit enzymatic activity on the skin and to reduce or prevent the occurrence of inflammation. Repeated application of similar treated articles to the wearer's skin provides an available source with which the enzyme inhibitor transfers onto the skin continuously over time and accumulates to provide a proactive defense against harmful enzymes for the treatment and/or prevention of diaper dermatitis.
Abstract:
A high-sensitivity field effect transistor using as a channel ultrafine fiber elements such as carbon nanotube, and a biosensor using it. The field effect transistor comprises a substrate, a source electrode and a drain electrode arranged on the substrate, a channel for electrically connecting the source electrode with the drain electrode, and a gate electrode causing polarization due to the movement of free electrons in the substrate. For example, the substrate has a support substrate consisting of semiconductor or metal, a first insulating film formed on a first surface of the support substrate, and a second insulating film formed on a second surface of the support substrate, the source electrode, the drain electrode, and the channel arranged on the first insulating film, the gate electrode disposed on the second insulating film.
Abstract:
A method of forming a nanowire and a semiconductor device comprising the nanowire are provided. The method of forming a nanowire includes forming a patterned SiyGe1-y layer (where, y is a real number that satisfies 0≦y
Abstract translation:提供了形成纳米线的方法和包括纳米线的半导体器件。 形成纳米线的方法包括在基底层上形成图案化的Si y Ga 1- y层(其中,y是满足0&lt; nlE; y <1的实数),以及在第一氧化物内形成第一氧化物层和至少一个纳米线 通过对图案化的SiyGe1-y层进行第一氧化处理。
Abstract:
The present invention pertains to nanoparticles, comprising a metal and/or polymer core, with 7-alpha hydroxylase, or an enzymatically active fragment thereof, nicotinamide adenine dinucleotide (NADH) and antibodies, or antibody fragments, specific for low density lipoprotein (LDL), attached to the core. The invention also concerns methods for reducing LDL cholesterol in a human or animal subject by administering nanoparticles of the invention. In a preferred embodiment, both circulating LDL and plasma cholesterol levels are reduced in the subject.
Abstract:
A carbon nanohorn (CNH) is oxidized to make an opening in the side of the CNH. A substance to be included, e.g., a metal, is introduced through the opening. The inclusion substance is moved to a tip part of the carbon nanohorn through heat treatment in vacuum or an inert gas. The CNH is further heat treated in an atmosphere containing oxygen in a low concentration to remove the carbon layer in the tip through catalysis of the inclusion substance. This exposes the inclusion substance. If the inclusion substance is a metal which is not moved to a tip part by the heat treatment in vacuum or an inert gas, the carbon part surrounding the fine catalyst particle is specifically burned by a heat treatment in an low oxygen concentration atmosphere, while utilizing the catalysis. Thus, the fine catalyst particle is fixed to the tip part of the CNH.