摘要:
Disclosed herein are compositions and methods useful for controlling β-amyloid levels. In particular, the instant invention relates to an antibody that catalyzes hydrolysis of β-amyloid at a predetermined amide linkage are provided. The present invention also provides a vectorized antibody that is capable of crossing the blood brain barrier and is also capable of catalyzing the hydrolysis of β-amyloid at a predetermined amide linkage. Also provided are methods for modulating β-amyloid levels in vivo using antibodies that bind to β-amyloid. These compositions and methods have therapeutic applications, including the treatment of Alzheimer's disease.
摘要:
A molecular motor in which multiple concentric cylinders (or nested cones) rotate around a common longitudinal axis. Opposing complementary surfaces of the cylinders or cones are coated with complementary motor protein pairs (such as actin and myosin). The actin and myosin interact with one another in the presence of ATP to rotate the cylinders or cones relative to one another, and this rotational energy is harnessed to produce work. The concentration of ATP and the number of nested cylinders or cones can be used to control the rotational speed of the motor. The length of the cylinders can also be used to control the power generated by the motor. In another embodiment, the molecular motor includes at least two annular substrates wherein one annular substrate is coated with a first motor protein and the other annular substrate is coated with a second motor protein. The first and second motor proteins interact with each other to move the second annular relative to the first annular substrate.
摘要:
Disclosed is a method for fabricating a high-performance field-effect transistor biosensor for diagnosing cancers using micro conductive polymer nanomaterials funtionalized with anti-VEGF aptamer. Disclosed is a high-sensitivity field-effect transistor biosensor for diagnosing cancers using a micro conductive polymer nanomaterial transistor array including a micro polymer nanomaterial transistor array including a channel region provided with a metal source electrode, a metal drain electrode, a gate and micro polymer nanomaterials, and an anti-VEGF aptamer covalently bound to the surface of the micro polymer nanomaterials constituting the channel region of the micro polymer nanomaterials transistor array, to target VEGF (Vascular endothelial growth factor).
摘要:
A peptide nanofiber having conductivity is provided. A conductive peptide nanofiber which includes a nanofiber formed through a manner of self-assembly of a peptide that has a nanofiber-forming ability and consists of an amino acid sequence of Xaa-Phe-Ile-Val-Ile-Phe-Xaa (SEQ ID NO: 1, wherein N-terminal Xaa is an arbitrary amino acid residue Xaa1; C-terminal Xaa is an arbitrary amino acid residue Xaa2; and Xaa1 and Xaa2 are an amino acid having an acidic side chain, an amino acid having a basic side chain, or an amino acid having a side chain with polarity according as acidity and basicity) or a derivative of the peptide and a conductive substance added thereto, the aforementioned conductive substance being added to an amino group of the peptide or the derivative.
摘要:
The present invention provides an antibody which catalyzes hydrolysis of null-amyloid at a predetermined amide linkage. The antibody preferentially binds a transition state analog which mimics the transition state adopted by null-amyloid during hydrolysis at a predetermined amide linkage and also binds to natural null-amyloid with sufficient affinity to detect by ELISA. Alternatively, the antibody preferentially binds a transition state analog which mimics the transition state adopted by null-amyloid during hydrolysis at a predetermined amide linkage, and does not bind natural null-amyloid with sufficient affinity to detect by ELISA. Antibodies generated are characterized by the amide linkage which they hydrolyze. Specific antibodies provided include those which catalyze the hydrolysis at the amyloid linkages between residues 39 and 40, 40 and 41, and 41 and 42, of null-amyloid. The present invention also provides a vectorized antibody which is characterized by the ability to cross the blood brain barrier and is also characterized by the ability to catalyze the hydrolysis of null-amyloid at a predetermined amide linkage. The vectorized antibody can take the form of a bispecific antibody, which has a first specificity for the transferrin receptor and a second specificity for a transition state adopted by null-amyloid during hydrolysis. The present invention also provides a method for sequestering free null-amyloid in the bloodstream of an animal by intravenously administering antibodies specific for null-amyloid to the animal in an amount sufficient to increase retention of null-amyloid in the circulation. In addition, the present invention provides a method for sequestering free null-amyloid in the bloodstream of an animal by immunizing an animal with an antigen comprised of an epitope which is present on null-amyloid endogenous to the animal under conditions appropriate for the generation of antibodies which bind endogenous null-amyloid. Therapeutic applications of these methods include treating patients diagnosed with, or at risk for Alzheimer's disease. Methods for reducing levels of null-amyloid in the brain of an animal, by intravenously administering antibodies specific for endogenous null-amyloid to the animal, or by immunizing the animal with an antigen comprised of an epitope which is present on endogenous null-amyloid are also provided. In one embodiment, the antigen used to generate the antibodies is a transition state analog which mimics the transition state adopted by null-amyloid during hydrolysis at a predetermined amide linkage. Similar methods which utilize or generate antibodies which catalyze the hydrolysis of null-amyloid for reducing levels of circulating null-amyloid in an animal, and also for preventing the formation of amyloid plaques in the brain of an animal, and also for disaggregating amyloid plaques present in the brain of an animal, are also provided. Also provided is a method for generating antibodies which catalyze hydrolysis of a protein or polypeptide by immunizing an animal with an antigen comprised of an epitope which has a statine analog which mimics the conformation of a predetermined hydrolysis transition state of the polypeptide. A similar method, which utilizes reduced peptide bond analogs to mimic the conformation of a hydrolysis transition state of a polypeptide, is also provided.
摘要:
Disclosed is a method for fabricating a high-performance field-effect transistor biosensor for diagnosing cancers using micro conductive polymer nanomaterials funtionalized with anti-VEGF aptamer. Disclosed is a high-sensitivity field-effect transistor biosensor for diagnosing cancers using a micro conductive polymer nanomaterial transistor array including a micro polymer nanomaterial transistor array including a channel region provided with a metal source electrode, a metal drain electrode, a gate and micro polymer nanomaterials, and an anti-VEGF aptamer covalently bound to the surface of the micro polymer nanomaterials constituting the channel region of the micro polymer nanomaterials transistor array, to target VEGF (Vascular endothelial growth factor).
摘要:
The methods, apparatus and compositions disclosed herein concern the detection, identification and/or sequencing of biomolecules, such as nucleic acids or proteins. In certain embodiments of the invention, coded probes comprising a probe molecule attached to one or more nano-barcodes may be allowed to bind to one or more target molecules. After binding and separation from unbound coded probes, the bound coded probes may be aligned on a surface and analyzed by scanning probe microscopy. The nano-barcodes may be any molecule or complex that is distinguishable by SPM, such as carbon nanotubes, fullerenes, submicrometer metallic barcodes, nanoparticles or quantum dots. Where the probes are oligonucleotides, adjacent coded probes hybridized to a target nucleic acid may be ligated together before alignment and SPM analysis. Compositions comprising coded probes are also disclosed herein. Systems for biomolecule analysis may comprise an SPM instrument and at least one coded probe attached to a surface.
摘要:
The methods, apparatus and compositions disclosed herein concern the detection, identification and/or sequencing of biomolecules, such as nucleic acids or proteins. In certain embodiments of the invention, coded probes comprising a probe molecule attached to one or more nanobarcodes may be allowed to bind to one or more target molecules. After binding and separation from unbound coded probes, the bound coded probes may be aligned on a surface and analyzed by scanning probe microscopy. The nanobarcodes may be any molecule or complex that is distinguishable by SPM, such as carbon nanotubes, fullerenes, submicrometer metallic barcodes, nanoparticles or quantum dots. Where the probes are oligonucleotides, adjacent coded probes hybridized to a target nucleic acid may be ligated together before alignment and SPM analysis. Compositions comprising coded probes are also disclosed herein. Systems for biomolecule analysis may comprise an SPM instrument and at least one coded probe attached to a surface.
摘要:
Method for the attachment and/or crystallization of macromolecules, chemical reagents used in the said method, products obtained as well as applications of the said products in the field of materials and of structural biology, in particular as biosensors or as biomaterials. The said method comprises essentially the incubation, without stirring, for at least 15 minutes, of a biological macromolecule in solution with nanotubes of carbon closed at their ends, under suitable temperature and pH conditions.
摘要:
Disclosed are antibodies which catalyze hydrolysis of &bgr;-amyloid. Antibodies generated are characterized by the amide linkage which they hydrolyze. Methods of generating the antibodies by using &bgr;-amyloid peptides which incorporate transition state analogs are also provided. Also disclosed is a vectorized antibody which is characterized by the ability to cross the blood brain barrier, and is further characterized by the ability to catalyze the hydrolysis of &bgr;-amyloid. The vectorized antibody can take the form of a bispecific antibody, which has a first specificity for the transferrin receptor and a second specificity for a transition state adopted by &bgr;-amyloid during hydrolysis.