摘要:
Methods and systems for engineering a nanostructure are provided. An exemplary method includes creating at least one cytosine-cytosine and/or thymine-thymine mismatch in at least one oligonucleotide sequence, placing a metal ion into the mismatch of the oligonucleotide sequence to form an electronically functionalized nanostructure, and inducing self-assembly of the oligonucleotide sequence into a defined structure.
摘要:
The invention relates to a process for modifying the properties of a thin layer (1) formed on the surface of a support (2) forming a substrate (3) utilized in the field of microelectronics, nanoelectronics or microtechnology, nanotechnology, characterized in that it consists of: forming at least one thin layer (1) on a nanostructured support with high specific surface (2), and treating the nanostructured support with high specific surface (2) to generate internal strains in the support causing its deformation at least in the plane of the thin layer so as to ensure corresponding deformation of the thin layer to modify its properties.
摘要:
Systems, devices, and methods for designing and/or manufacturing transparent conductors. A system is operable to evaluate optical and electrical manufacturing criteria for a transparent conductor. The system includes a database including stored reference transparent conductor data, and a controller subsystem configured to compare input acceptance manufacturing criteria for a transparent conductor to stored reference transparent conductor data.
摘要:
The inventive method for forming nano-dimensional clusters consists in introducing a solution containing a cluster-forming material into nano-pores of natural or artificial origin contained in a substrate material and in subsequently exposing said solution to a laser radiation pulse in such a way that a low-temperature plasma producing a gaseous medium in the domain of the existence thereof, wherein a cluster material is returned to a pure material by the crystallization thereof on a liquid substrate while the plasma is cooling, occurs, thereby forming mono-crystal quantum dots spliced with the substrate material. Said method makes it possible to form two- or three-dimensional cluster lattices and clusters spliced with each other from different materials. The invention also makes it possible to produce wires from different materials in the substrate nano-cavities and the quantum dots from the solution micro-drops distributed through an organic material applied to a glass.
摘要:
An electrical circuit structure employing graphene as a charge carrier transport layer. The structure includes a plurality of graphene layers. Electrical contact is made with one of the layer of the plurality of graphene layers, so that charge carriers travel only through that one layer. By constructing the active graphene layer within or on a plurality of graphene layers, the active graphene layer maintains the necessary planarity and crystalline integrity to ensure that the high charge carrier mobility properties of the active graphene layer remain intact.
摘要:
In accordance with aspects of the invention, a method of forming a metal-insulator-metal stack is provided. The method includes forming a first conducting layer, forming a resistivity-switching carbon-based material above the first conducting layer, and forming a second conducting layer above the carbon-based material, wherein the carbon-based material has a thickness of not more than ten atomic layers. Other aspects are also described.
摘要:
Photovoltaic structures for the conversion of solar irradiance into electrical free energy. In a particular implementation, a photovoltaic cell includes a granular semiconductor and oxide layer with nanometer-size absorber semiconductor grains surrounded by a matrix of oxide. The semiconductor and oxide layer may be disposed between electron and hole conducting layers. In some implementations, multiple semiconductor and oxide layers can be deposited.
摘要:
A light-emitting device includes an n-type silicon thin film (2), a silicon thin film (3), and a p-type silicon thin film (4). The silicon thin film (3) is formed on the n-type silicon thin film (2) and the p-type silicon thin film (4) is formed on the silicon thin film (3). The n-type silicon thin film (2), the silicon thin film (3), and the p-type silicon thin film (4) form a pin junction. The n-type silicon thin film (2) includes a plurality of quantum dots (21) composed of n-type Si. The silicon thin film (3) includes a plurality of quantum dots (31) composed of p-type Si. The p-type silicon thin film (4) includes a plurality of quantum dots (41) composed of p-type Si. Electrons are injected from the n-type silicon thin film (2) side and holes are injected from the p-type silicon thin film (4) side, whereby light is emitted at a silicon nitride film (3).
摘要:
A nanotube device and a method of depositing nanotubes for device fabrication are disclosed. The method relates to electrophoretic deposition of nanotubes, and allows a control of the number of deposited nanotubes and positioning within a defined region.
摘要:
Systems, devices, and methods for designing and/or manufacturing transparent conductors. A system is operable to evaluate optical and electrical manufacturing criteria for a transparent conductor. The system includes a database including stored reference transparent conductor data, and a controller subsystem configured to compare input acceptance manufacturing criteria for a transparent conductor to stored reference transparent conductor data.