Abstract:
In one embodiment, a method includes depositing a CZT(S, Se) precursor layer onto a substrate, introducing a source-material layer comprising Sn(S, Se) into proximity with the precursor layer, and annealing the precursor layer in proximity with the source-material layer in a constrained volume.
Abstract:
In one example embodiment, a method includes sputtering one or more absorber layers over a substrate. In a particular embodiment, the substrate is pre-heated to a substrate temperature of at least approximately 300 degrees Celsius prior to the sputtering and during the sputtering of each of one or more of the absorber layers, and the sputtering of at least one of the absorber layers is performed in a sputtering atmosphere having a pressure of at least 0.5 Pascals. Additionally, in a particular embodiment, the sputtering of at least one of the absorber layers comprises sputtering from a sputter target that comprises a chalcogenide alloy that comprises copper (Cu) and one or more of sulfur (S), selenium (Se), or tellurium (Te).
Abstract:
In one embodiment, a method includes depositing a photoactive layer onto a first substrate, depositing a contact layer onto the photoactive layer, attaching a second substrate onto the contact layer, and removing the first substrate from the photoactive layer, contact layer, and second substrate.
Abstract:
A perpendicular magnetic recording medium having a substrate, a Cr-doped Fe-alloy-containing underlayer containing about 8 to 18 at % Cr and a perpendicular recording magnetic layer, and a process for improving corrosion resistance of the recording medium and for manufacturing the recording medium are disclosed.
Abstract:
CoCrPtB is a conventional material used in some of the layers of a thin film magnetic media structure used for recording data in data storage devices such as hard drives. Typically the CoCrPtB layers used for magnetic media have high Cr and low B in bottom magnetic layers and low Cr and high B in top magnetic layers. In accordance with one embodiment of this invention and to improve media electrical performance, fifth elements, such as Ta, Nb and Hf, etc. were added to the CoCrPtB materials, resulting in CoCrPtB-X, to enhance the grain segregation. The five element CoCrPtB-X layers were deposited using a pulsed direct current sputter technique instead of conventional direct current sputtering techniques. The resulting magnetic media structure having CoCrPtB-X alloy layers exhibits an increase in coercivity Hc and improvement in recording performance.
Abstract:
A ferromagnetically coupled magnetic recording medium having a first ferromagnetic layer, a second ferromagnetic layer, and a ferromagnetic coupling layer to ferromagnetically couple the first ferromagnetic layer to the second ferromagnetic layer is used as stable magnetic media with high MrT in high density recording hard drives. The first ferromagnetic layer is the stabilization layer and the second ferromagnetic layer is the main recording layer. The ferromagnetic coupling layer comprises a conductive material having a thickness which produces ferromagnetic coupling between said first ferromagnetic layer and said second ferromagnetic layer via the RKKY interaction.
Abstract:
CoCrPtB is a conventional material used in some of the layers of a thin film magnetic media structure used for recording data in data storage devices such as hard drives. Typically the CoCrPtB layers used for magnetic media have high Cr and low B in bottom magnetic layers and low Cr and high B in top magnetic layers. In accordance with one embodiment of this invention and to improve media electrical performance, fifth elements, such as Ta, Nb and Hf, etc. were added to the CoCrPtB materials, resulting in CoCrPtB—X, to enhance the grain segregation. The five element CoCrPtB—X layers were deposited using a pulsed direct current sputter technique instead of conventional direct current sputtering techniques. The resulting magnetic media structure having CoCrPtB—X alloy layers exhibits an increase in coercivity Hc and improvement in recording performance.
Abstract:
A high areal recording density longitudinal magnetic recording medium having improved thermal stability and signal-to-medium noise ratio (“SMNR”), comprises: (a) a non-magnetic substrate having at least one surface; and (b) a layer stack overlying the at least one surface, comprising a plurality of vertically spaced-apart ferromagnetic layers, each vertically adjacent pair of ferromagnetic layers being spaced-apart by a respective non-magnetic spacer layer, wherein: (i) at least one of the plurality of vertically adjacent, spaced-apart pairs of ferromagnetic layers forms an anti-ferromagnetically coupled media (“AFC”) component of the magnetic recording medium; and (ii) at least one of the plurality of vertically adjacent, spaced-apart pairs of ferromagnetic layers forms a laminated media (“LM”) component of the magnetic recording medium.
Abstract:
An interlayer structure that, in one implementation, includes a combination of an amorphous or nano-crystalline seed-layer, and one or more metallic layers, deposited on the seed layer, with the fcc, hcp or bcc crystal structure is used to epitaxially orient a semiconductor layer on top of non-single-crystal substrates. In some implementations, this interlayer structure is used to establish epitaxial growth of multiple semiconductor layers, combinations of semiconductor and oxide layers, combinations of semiconductor and metal layers and combination of semiconductor, oxide and metal layers. This interlayer structure can also be used for epitaxial growth of p-type and n-type semiconductors in photovoltaic cells.
Abstract:
In one embodiment, a method includes depositing a chalcogenide precursor layer onto a substrate, introducing a cover into proximity with the precursor layer, and annealing the precursor layer in proximity with of the cover, where the annealing is performed in a constrained volume, and where the presence of the cover reduces decomposition of volatile species from the precursor layer during annealing.