Abstract:
A circuit portion comprises a load circuit portion and a bias circuit portion. The load circuit portion comprises a load transistor. The bias circuit portion comprises a replica transistor matched to the load transistor and connected to the load transistor at a node such that when a current flows through the replica transistor, a current proportional to the current through the replica transistor flows through the load transistor. The bias circuit portion also comprises a current input for receiving an input current, a supply voltage input for receiving a supply voltage, and a feedback loop arranged to: adjust a voltage at the node connecting the replica transistor and the load transistor such that the replica transistor conducts a current proportional to the input current, and counteract variations in the voltage at the node connecting the replica transistor and the load transistor arising from changes in the supply voltage.
Abstract:
A clock driver circuit for low powered clock driving may include: a multiple phase divider; a buffer supplying at least one of multiple phases to the multiple phase divider at a center frequency that is an integer multiple of an input frequency; and wherein the multiple phase divider and the buffer share a same current from a supply rail.
Abstract:
Provided is an electronic device including a ramp signal generation circuit configured to generate a ramp signal having a second slope that is greater by a first level than a first slope which corresponds to an analog gain, and a slope correction circuit configured to correct the second slope of the ramp signal by the first level to obtain the first slope.
Abstract:
A slope control circuit is connected between a replica circuit and a controller area network bus. The replica circuit generates an upper and a lower feedback signal. The slope control circuit receives and is driven by the feedback signals for controlling a voltage slope of a high-level output and a low-level output. The slope control circuit comprises an upper and a lower driving circuit, individually connected between the replica circuit, the high-level output and the low-level output. The upper driving circuit and the lower driving circuit respectively include at least one charging and discharging circuit. By controlling the charging and discharging circuit, the present invention controls decreasing voltage slope of the high-level output to be symmetric to increasing voltage slope of the low-level output, and delay time of the circuit switching between different operating modes to be equivalent.
Abstract:
A method and a clock receiver circuit for implementing low jitter and enhanced duty cycle, and a design structure on which the subject circuit resides are provided. The clock receiver circuit accepts single-ended complementary metal oxide semiconductor (CMOS) and differential clock signals. The clock receiver circuit includes input circuitry coupled to a differential pair that biasing a reference clock and allows for single-ended or differential clock signals. The differential pair uses multiple current mirrors for switching the polarity of the input signals to achieve enhanced jitter performance, and cross coupled inverters for retaining signal symmetry.
Abstract:
A driver IC (Integrated Circuit) includes a power supply terminal; an output terminal to be coupled to a load element; a connection node on a current path between the power supply terminal and the output terminal; a substrate resistance, having one end coupled to the connection node; an output transistor including a gate, wherein the output transistor is coupled in series with the substrate resistance through the connection node; a resistance, having one end coupled to an other end of the substrate resistance; and a voltage detecting circuit configured to detect a voltage depending on a voltage between the one end of the substrate resistance and the other end of the substrate resistance, and to output an output signal, which is as an output of the voltage detecting circuit, to the gate of the output transistor.
Abstract:
A semiconductor high-side driver including; an input terminal; an output terminal to be coupled to a load element; an output MOS transistor having a drain coupled to a power supply terminal, a source coupled to the output terminal and a gate; a sense MOS transistor having a drain coupled to the power supply terminal, a gate coupled to the gate of the output MOS transistor and a source; a control circuit coupled to the input terminal and provides a control signal to the gate of the output MOS transistor; and a voltage detection circuit which includes: a threshold voltage generation circuit having a first terminal coupled to the power supply terminal and a second terminal which generates a voltage lower than a voltage of the power supply terminal by a threshold voltage; and a comparator.
Abstract:
A semiconductor device includes an N-type semiconductor region, a back electrode, first and second P-type base regions, first and second N+ diffusion layers, a gate insulating film, a gate electrode and a voltage detecting circuit. The first N+ diffusion layer functions as a source of an output MOS transistor and functions as a source of a sense MOS transistor. The gate electrode is provided to oppose the N-type semiconductor region and the first and second P-type base regions through the gate insulating film 40. A load current flows between the back electrode and the first N+ diffusion layer. The voltage detecting circuit generates a detection signal.
Abstract:
The invention provides a level shift circuit which uses a low supply voltage level shift circuit as a first level shift element and a high supply voltage level shift circuit as a second level shift element and which is configured to switch these level shift circuits in accordance with supply voltage. The low supply voltage level shift circuit is in an operating state with its power supply turned ON when supply voltage is low and in a shut-down state with the power supply turned OFF to ensure the breakdown voltages of the elements when supply voltage is high. The high supply voltage level shift circuit is in a shut-down state with its power supply turned OFF when supply voltage is low and comes into an operating state with the power supply turned ON while ensuring the breakdown voltages of elements when supply voltage is high.
Abstract:
A delay circuit includes first and second MISFETs and a capacitance element connected to the common juncture of the first and the second MISFETs. The electricity of the capacitance element is charged through the first MISFET and is discharged through the second MISFET. Since the first and the second MISFETs effectively perform a push-pull operation, a signal of a predetermined level and a predetermined delay time to be delivered to a circuit having a logic threshold voltage is derived from the common juncture.