Abstract:
A protocol for assessing the prognosis for a patient diagnosed with a neoplasm or suspected of having a neoplasm is provided herein. The protocol involves the steps of determining a mitotic cells to proliferating cells ratio (M:P ratio) in a neoplastic tissue sample obtained from the patient and producing a prognosis for the neoplasm based on the M:P ratio.
Abstract:
A method for diagnosing and treating an immune microbial dysfunction in a subject, the method comprising: receiving an aggregate set of biological samples from a population of subjects; generating at least one of a microbiome composition dataset and a microbiome functional diversity dataset for the population of subjects; generating a characterization of the immune microbial dysfunction based upon features extracted from at least one of the microbiome composition dataset and the microbiome functional diversity dataset, wherein the characterization is diagnostic of at least one of Crohn's disease, inflammatory bowel disease (IBD), irritable bowel syndrome (IBS), ulcerative colitis, and celiac disease; based upon the characterization, generating a therapy model configured to correct the immune microbial dysfunction; and at an output device associated with the subject, promoting a therapy to the subject based upon the characterization and the therapy model.
Abstract:
A method for detecting a list of known biopolymer molecules comprises: calculating, for each biopolymer, a respective list of oligomer molecules predicted to be produced by chemical processing; calculating, for each oligomer molecule, a respective predicted chromatographic elution time period; assigning, for each biopolymer molecule, one or more selected oligomer molecules to be detected, wherein the selecting is performed using weighted selection probabilities determined from the predicted elution times; scheduling a plurality of oligomer detection events of a detection system, wherein each oligomer detection event corresponds to a respective one of the predicted elution time periods; performing the chemical reaction or processing of the sample to generate a processed sample; introducing the processed sample into a chromatographic system; introducing any eluting oligomers into the detection system; and operating the detection system so as to search for each of the selected oligomer molecules in accordance with the scheduled detection events.
Abstract:
Various medical systems and methods are described, including a medical monitoring system. The medical monitoring system can have a fluid system configured to receive bodily fluid and optically analyze said fluid to determine analyte concentration. The fluid system can have a removable portion. The removable portion can have an opening with a port. The system can also have a container configured to contain anticoagulant. The container can have a portion configured to mate with the port of the removable portion. The container can be further configured to not fit into a conventional luer fitting. An anti-coagulant insertion apparatus is also described. The apparatus can have a syringe, a dock with a port, and an adapter configured to connect the syringe to the port. The dock can also have a tab configured to move with the port.
Abstract:
A biometric biochemical analysis system includes a user interface module to provide instructions for collecting and handling biochemical sampling and processing related to biometric data gathering as well as capturing biometric data using digital data capturing devices. The user interface module and display are integrated with analysis and communications portions of the biometric biochemical analysis system to provide a portable system for multi-portion data collecting, storage, verification, and analysis.
Abstract:
This disclosure provides automatic compensation methods, corresponding devices and a corresponding flow cytometer. The automatic compensation method includes: determining a base cell population and a reference cell population in the cell populations according to positions of the cell populations in a dot plot that needs to be compensated, where the base cell population is a double negative cell population and the reference cell population is a single positive cell population adjacent to the base cell population in a compensating direction (S10); calculating automatically a compensation value through a progressive approximation algorithm according to a position of the base cell population, and updating the dot plot with the compensation value, so that the position difference between the reference cell population and the base cell population both in the dot plot in the compensating direction is within a predetermined range (S16).
Abstract:
Systems and methods for processing and analyzing samples are disclosed. The system may process samples, such as biological fluids, using assay cartridges which can be processed at different processing locations. In some cases, the system can be used for PCR processing. The different processing locations may include a preparation location where samples can be prepared and an analysis location where samples can be analyzed. To assist with the preparation of samples, the system may also include a number of processing stations which may include processing lanes. During the analysis of samples, in some cases, thermal cycler modules and an appropriate optical detection system can be used to detect the presence or absence of certain nucleic acid sequences in the samples. The system can be used to accurately and rapidly process samples.
Abstract:
The methods and systems described herein may involve determining at least one lifeotype of at least one individual, analyzing the at least one lifeotype, and delivering content to at least one individual based on the analysis. The methods and systems described herein may involve providing a game, determining at least one lifeotype of at least one player of the game, analyzing the at least one lifeotype, and affecting the game play based on the analysis. The methods and systems described herein may involve providing an interactive space, determining at least one lifeotype of at least one individual in the space, analyzing the at least one lifeotype, and modifying at least one attribute of the space based on the analysis.