Abstract:
A circuit structure for realizing circuit pin multiplexing, comprising an MCU module, a temperature sensing circuit and a functional module circuit. The output end of the temperature sensing circuit is connected with an enable signal interface of the MCU module, the output voltage of the temperature sensing circuit is always higher than the threshold voltage of the enable signal, and the MCU module is connected with the functional module circuit. The circuit structure of the present invention realizes the mutual influence of analog signal output and digital signal transmission by designing a temperature sensing output curve, and achieves multi-function multiplexing of a single pin, so that the output of the analog signal and the input of the digital signal can share the pins, it solves the problem of the limitation of the number of pins, and promotes the transmission of the signal and improves the cost performance of the circuit.
Abstract:
A linear power converter circuit comprising: an output transistor, wherein a gate of the output transistor is controlled by an error amplification signal for converting an input voltage into an output voltage; an error amplification circuit configured to amplify a difference between a reference voltage and a feedback voltage to generate the error amplification signal, thereby regulating the output voltage to a predetermined level, wherein the feedback voltage is related to the output voltage; and a first surge protection circuit configured to clamp the gate-source voltage of the output transistor when the slew rate of the input voltage exceeds a threshold, thereby limiting the current through the output transistor to not exceed a predetermined upper limit.
Abstract:
An apparatus includes an amplifier, a pass transistor connected to a load and to an input of the amplifier, and a capacitor connected between the amplifier and the pass transistor.
Abstract:
A power system includes a field effect transistor (FET) with a first terminal, a gate terminal, and a third terminal. A Zener diode is connected in series between the first terminal of the FET and the gate terminal of the FET. The Zener diode is oriented to allow current through the Zener diode only if its voltage difference is at or over the Zener voltage of the Zener diode. A capacitor is connected in parallel with the Zener diode. The capacitor is configured to raise gate drive current of the FET during a rising edge of a lightning transient and thereby reduce voltage drop across the FET faster than the Zener diode can do on its own.
Abstract:
A voltage regulator is provided wherein electricity flows through a second transistor in an operating state in which a control unit) applies an operating voltage to a base of the second transistor. A Zener diode sets, in the operating state, a voltage of a second conductive path to a voltage corresponding to a voltage across the Zener diode. A current corresponding to an addition value obtained by adding a value of a current flowing through a second resistor portion in the operating state, a value of a current flowing through a third resistor portion in the operating state, and a value of a current flowing through the Zener diode in the operating state flows through a ground-side resistor portion. A control unit stops the output of the operating voltage when a voltage of the second conductive path is lower than or equal to a threshold value.
Abstract:
A low dropout voltage regulator unit includes an error amplifier and a power stage having an output terminal that is looped back onto the error amplifier and is capable of delivering an output current to a load. The unit includes multiple main supply inputs that are intended to potentially receive, respectively, multiple different supply voltages. The power stage includes multiple power paths that are connected, respectively, between the main supply inputs and the output terminal, are individually selectable and each comprise an output transistor. The unit also includes a selector circuit connected to the main supply inputs and configured to select one of the power paths according to a selection criterion. The error amplifier includes an output stage configured to selectively control the output transistor of the selected power path.
Abstract:
A voltage transformer comprising a first input terminal and a second input terminal. An input voltage can be applied between the first input terminal and the second input terminal, a switch branch having a switch, wherein the switch is designed to close a circuit path between the first input terminal and the second input terminal, and a reverse polarity protection diode, which, in the switch branch, is connected in series with the switch.
Abstract:
The present disclosure illustrates a single-inductor dual-output (SIDO) power converter for hysteresis current control mode and a control method thereof. In the SIDO power converter provided by the instant disclosure, a detecting circuit, connected to the upper bridge transistor, determines whether the inductive current reaches the upper limit threshold or the lower limit threshold, and further drives a control circuit to turn on or off the corresponding upper bridge transistor and/or the lower bridge transistor, so as to simplify the operation of the hysteresis current control mode.
Abstract:
The reversal of the flow of output current in a voltage regulator is prevented by equipping the voltage regulator of a regulation transistor controlled by an analog voltage control, having its current terminals connected between the control terminal of the fifth transistor power of the regulator and the power supply line or the common ground node of the regulator. The regulation transistor is configured to provide an electrical path of conduction between the control terminal and the power supply line or the ground node and is controlled by an analog voltage control that varies in a continuous manner between a first level, suitable to extinguish the regulation transistor, and a second level suitable for biasing it in an operating condition of deep conduction, as the difference between the supply voltage and the regulated output voltage approaching an offset voltage.
Abstract:
A method for controlling the in-rush current to a hot plug device. The method includes providing a series of turn on pulses to the gates of a plurality of turn on FETs on a hot plug device coupled to a direct current power source, wherein each pulse causes the plurality of FETs to pass current from the direct current power source to a subsystem of the hot plug device, and wherein each pulse has a duration that ends before the impedance of the turn on FETs falls below a safe operating region. The method further includes providing a steady turn on signal to the FETs in response to the output voltage from the FETs to a subsystem of the hot plug device exceeding a predetermined voltage threshold.