Abstract:
An exposure apparatus includes: a light-emission unit that emits exposure light; a mask stage that holds an exposure mask; a workpiece stage that holds a workpiece; a projection optical system that irradiates the workpiece held by the workpiece stage with the exposure light emitted from the light-emission unit through the exposure mask; a reflective member disposed in an irradiation region for the exposure light applied from the projection optical system in a step of detecting a mask mark of the exposure mask; an alignment microscope that is disposed in an optical path of the exposure light applied to the mask mark and captures an image of the mask mark on the basis of reflected light reflected by the reflective member in the detection step; and a moving mechanism that moves the reflective member from a position deviated from the irradiation region to the irradiation region in the detection step.
Abstract:
The present invention provides a number of innovations in the area of computational process control (CPC). CPC offers unique diagnostic capability during chip manufacturing cycle by analyzing temporal drift of a lithography apparatus/ process, and provides a solution towards achieving performance stability of the lithography apparatus/process. Embodiments of the present invention enable optimized process windows and higher yields by keeping performance of a lithography apparatus and/or parameters of a lithography process substantially close to a pre-defined baseline condition. This is done by comparing the measured temporal drift to a baseline performance using a lithography process simulation model. Once in manufacturing, CPC optimizes a scanner for specific patterns or reticles by leveraging wafer metrology techniques and feedback loop, and monitors and controls, among other things, overlay and/or CD uniformity (CDU) performance over time to continuously maintain the system close to the baseline condition.
Abstract:
A liquid immersion exposure method exposes a substrate with exposure light through liquid, and uses a projection system, a stage system having a holder that holds the substrate, a supply port via which the liquid is supplied arranged such that an upper surface of the substrate faces the supply port and that is spaced a first distance from an optical axis of the projection system, and a recovery port via which the liquid is collected arranged such that the upper surface of the substrate faces the recovery port, which is spaced a second distance greater than the first distance from the optical axis of the projection system, and that encircles the supply port. In the method, the substrate held on the holder is positioned based on a detection result of an alignment system that detects an alignment mark of the substrate not through the liquid.
Abstract:
The present invention provides a lithography system including an obtaining unit which obtains a transfer function describing a relationship between first vibration generated in one lithography apparatus of two lithography apparatuses among at least three lithography apparatuses, and second vibration generated in the other lithography apparatus upon transmission of the first vibration to the other lithography apparatus, and a calculator which calculates, based on the transfer function, an amount of vibration of a first lithography apparatus among the at least three lithography apparatuses due to vibration of lithography apparatuses, other than the first lithography apparatus, and a controller which controls the lithography apparatuses other than the first lithography apparatus, so that the amount of vibration calculated falls below a tolerance.
Abstract:
An exposure apparatus and an optical member wherein impurities can be prevented from infiltrating between microlens arrays and a substrate, and microlenses can be prevented from being scratched by the impurities and by getting abnormally close to the substrate. Microlens arrays in which pluralities of microlenses are formed are arranged above a transparent substrate, and the microlens arrays are bonded and the end surfaces to a mask. Alignment mark supports are bonded to the mask at both sides of the microlens arrays, and alignment marks are formed in the surfaces of the alignment mark supports that face the substrate. The spaces between the alignment mark supports and the substrate are smaller than the spaces between the microlens arrays and the substrate.
Abstract:
The invention relates to an assembly for enclosing a target processing machine. The assembly comprises an enclosure and a transfer unit. The enclosure comprises a base plate for arranging said target processing machine thereon, side wall panels, which are fixed to said base plate, and a top wall panel which is fixed to said side wall panels. In addition, the enclosure comprises an access opening in a side wall of the enclosure. The transfer unit comprising one or more transfer elements for moving the transfer unit with respect to the base plate. The transfer unit further comprises a door panel which is arranged for closing the access opening, wherein the door panel is movably mounted to the transfer unit by means of a flexible coupling which allows a movement of the door panel with respect to the transfer unit at least in a direction towards and/or away from the enclosure.
Abstract:
While a wafer stage moves linearly in a Y-axis direction, surface position information of a wafer surface at a plurality of detection points set at a predetermined interval in an X-axis direction is detected by a multipoint AF system, and by a plurality of alignment systems arranged in a line along the X-axis direction, marks at different positions on the wafer are each detected, and a part of a chipped shot of the wafer is exposed by a periphery edge exposure system. This allows throughput to be improved when compared with the case when detection operation of the marks, detection operation of the surface position information (focus information), and periphery edge exposure operation are performed independently.
Abstract:
The present invention provides a number of innovations in the area of computational process control (CPC). CPC offers unique diagnostic capability during chip manufacturing cycle by analyzing temporal drift of a lithography apparatus/ process, and provides a solution towards achieving performance stability of the lithography apparatus/process. Embodiments of the present invention enable optimized process windows and higher yields by keeping performance of a lithography apparatus and/or parameters of a lithography process substantially close to a pre-defined baseline condition. This is done by comparing the measured temporal drift to a baseline performance using a lithography process simulation model. Once in manufacturing, CPC optimizes a scanner for specific patterns or reticles by leveraging wafer metrology techniques and feedback loop, and monitors and controls, among other things, overlay and/or CD uniformity (CDU) performance over time to continuously maintain the system close to the baseline condition.
Abstract:
A projection system is provided that includes a sensor system that measures at least one parameter that relates to the physical deformation of a frame that supports the optical elements within the projection system, and a control system that, based on the measurements from the sensor system, determines an expected deviation of the position of the beam of radiation projected by the projection system that is caused by the physical deformation of the frame.
Abstract:
A gas gauge (100) is provided for use in a vacuum environment having a measurement gas flow channel (105). The gas gauge comprises a measurement nozzle (110) in the measurement gas flow channel (105). The measurement nozzle (110) is configured to operate at a sonically choked flow condition of a volumetric flow being sourced from a gas supply (120) coupled to the measurement gas flow channel (105). The gas gauge (100) further comprises a pressure sensor (127) operatively coupled to the measurement gas flow channel (105) downstream from the sonically choked flow condition of the volumetric flow to measure a differential pressure of the volumetric flow for providing an indication of a gap (130) between a distal end of the measurement nozzle (135) and a target surface (140) proximal thereto.